This manual must only be used by a qualified heating installer/service technician. Failure to comply could result in severe personal injury, death or substantial property damage.

When calling or writing about the boiler—Please have: boiler model number from the boiler rating label and CP number from the boiler jacket. You may list the CP number in the space provided on the "Installation and service certificate" found on page 18.

Hazards that will cause severe personal injury, death or substantial property damage.

Hazards that can cause severe personal injury, death or substantial property damage.

Special instructions on installation, operation or maintenance that are important but not related to personal injury or property damage.

INSTALLER — Read all instructions before installing. Read page 2 first. Follow all instructions in proper order to prevent personal injury or death.
- Consider piping and installation when determining boiler location.
- Any claims for damage or shortage in shipment must be filed immediately against the transportation company by the consignee.

USER — Please read the following. Failure to comply could result in severe personal injury, death or substantial property damage.
- This manual is for use only by your qualified heating installer/service technician.
- Please see the User's Information Manual for your reference.
- Have the boiler serviced by a qualified service technician, at least annually.

This manual must only be used by a qualified heating installer/service technician. Failure to comply could result in severe personal injury, death or substantial property damage.

When calling or writing about the boiler—Please have: boiler model number from the boiler rating label and CP number from the boiler jacket. You may list the CP number in the space provided on the "Installation and service certificate" found on page 18.

Boiler Manual
Gas-Fired Water Boilers

Contents

Page
1 Prepare boiler location .. 2
2 Prepare boiler ... 6
3 Install water piping .. 10
4 Install gas piping ... 13
5 Field wiring ... 14
6 Start-up .. 15
7 Checkout procedure .. 18
8 Sequence of operation — standing pilot boilers 19
9 Lighting instructions — GWA standing pilot boilers 20
10 Service and maintenance .. 22
11 Troubleshooting .. 27
12 Replacement parts .. 29
13 Dimensions .. 34
14 Ratings ... 35

Hazard definitions

DANGER

CAUTION

NOTICE

Hazard definitions

GWA Gas-Fired Water Boilers – Boiler Manual
Failure to adhere to the guidelines below can result in severe personal injury, death or substantial property damage.

When servicing boiler —

1. To avoid electric shock, disconnect electrical supply before performing maintenance.
2. To avoid severe burns, allow boiler to cool before performing maintenance.

Boiler operation —

3. Do not block flow of combustion or ventilation air to boiler.
4. Should overheating occur or gas supply fail to shut off, do not turn off or disconnect electrical supply to circulator. Instead, shut off the gas supply at a location external to the appliance.
5. Do not use this boiler if any part has been under water. Immediately call a qualified service technician to inspect the boiler and to replace any part of the control system and any gas control that has been under water.

Boiler water —

6. Do NOT use petroleum-based cleaning or sealing compounds in boiler system. Water seal deterioration will occur, causing leakage between boiler sections, circulator flanges, diaphragm tanks or other system components. This result in substantial property damage.
7. Do NOT use “homemade cures” or “boiler patent medicines”. Serious damage to boiler, personnel and/or property may result.
8. Continual fresh makeup water will reduce boiler life. Mineral buildup in sections reduces heat transfer, overheats cast iron, and causes section failure. Addition of oxygen and other gases can cause internal corrosion. Leaks in boiler or piping must be repaired at once to prevent makeup water.
9. Do not add cold water to hot boiler. Thermal shock can cause sections to crack.

Glycol — potential fire hazard —

All glycol is flammable when exposed to high temperatures. If glycol is allowed to accumulate in or around the boiler or any other potential ignition source, a fire can develop. In order to prevent potential severe personal injury, death or substantial property damage from fire and/or structural damage:

• Never store glycol of any kind near the boiler or any potential ignition source.
• Monitor and inspect the system and boiler regularly for leakage. Repair any leaks immediately to prevent possible accumulation of glycol.
• Never use automotive antifreeze or ethylene glycol in the system. Using these glycols can lead to hazardous leakage of glycol in the boiler system.

1. Prepare boiler location

Codes & checklist

Installations must follow these codes: • Local, state, provincial, and national codes, laws, regulations and ordinances.
• Standard for Controls and Safety Devices for Automatically Fired Boilers, ANSI/ASME CG-1, when required.
• National Electrical Code.
• For Canada only: B149.1 or B149.2 Installation Code, CSA C22.1 Canadian Electrical Code Part 1 and any local codes.

Certification

NOTICE

Before locating the boiler:

• Check for nearby connection to: System water piping. Venting connections. Gas supply piping. Electrical power.
• Check area around boiler: Remove any combustible materials, gasoline and other flammable liquids.

WARNING

Failure to keep boiler area clear and free of combustible materials, gasoline and other flammable liquids and vapors can result in severe personal injury, death or substantial property damage.

If new boiler will replace existing boiler, check for and correct system problems, such as:

1. System leaks causing oxygen corrosion or section cracks from hard water deposits.
2. Incorrectly-sized expansion tank.
3. Lack of antifreeze in boiler water causing system and boiler to freeze and leak.

2. Net I=B=R ratings are based on net installed radiation of sufficient quantity for the requirements of the building and nothing need be added for normal piping and pickup.

1. Based on standard test procedures prescribed by the United States Department of Energy.
2. Net I=B=R ratings are based on net installed radiation of sufficient quantity for the requirements of the building and nothing need be added for normal piping and pickup. Ratings are based on a piping and pickup allowance of 1.15. An additional allowance should be made for unusual piping and pickup loads.
3. See information at right for model number suffixes. Letters shown are model number suffixes. An “N” after the model number designates natural gas. The letter after the “N” designates the pilot ignition system — “S” for standing pilot or “I” for spark-ignited pilot. For example, a suffix “NS” means a natural standing pilot boiler.
4. Contact your International Comfort Products dealer regarding information and parts for high altitude applications.

NOTICE

Install GWA boilers for residential radiant panel systems, converted gravity heating systems or other low water temperature applications per instructions in this manual to avoid damage due to condensation. GWA boilers are CSA design certified for installation on combustible flooring.
GWA boilers are ASME rated for 50 psig working pressure.
1. Provide minimum clearances for cleaning and servicing the boiler and for access to controls and components as listed in the table below.

2. Provide at least screwdriver clearance to jacket front panel screws for removal of front panel for inspection and minor service. If unable to provide at least screwdriver clearance, install unions and shutoff valves in system so boiler can be moved for servicing.

![Figure 1: Minimum clearances](image)

Clearances

Service clearances:

1. Provide minimum clearances for cleaning and servicing the boiler and for access to controls and components as listed in the table below.

- **Top (for cleaning flueways):** 35°
- **Front (for access to controls and components):** 18"
- **Back:** 7"
- **Left side (for cleaning and servicing):** 24"
- **Right side:** 7"

Minimum clearances to combustible materials:

1. Hot water pipes must be at least 1/2" from combustible material.
2. Single-wall vent pipe must be at least 6 inches from combustible material.
3. Type B double-wall metal vent pipe — See vent manufacturer’s recommendation for clearances to combustible material.

Clearances from combustible materials:

- **Front (provides access):** 3"
- **Back:** 7"
- **Left side (provides access):** 6"
- **Right side:** 2"

Small space installations

1. When the boiler is located in a closet or small space, provide clearances no less than those shown in Figure 1. The clearances are required to any surface, whether combustible or non-combustible.

Residential garage installation

Take the following special precautions when installing the boiler in a residential garage. If the boiler is located in a residential garage, per ANSI Z223.1, paragraph 5.1.9:

- Mount the boiler a minimum of 18 inches above the floor of the garage to assure the burner and ignition devices will be no less than 18 inches above the floor.
- Locate or protect the boiler so it cannot be damaged by a moving vehicle.

Table 1: Minimum foundation size

<table>
<thead>
<tr>
<th>Boiler model</th>
<th>Minimum foundation length</th>
<th>Minimum foundation width</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWA052</td>
<td>25"</td>
<td>12"</td>
</tr>
<tr>
<td>GWA070</td>
<td>25"</td>
<td>12"</td>
</tr>
<tr>
<td>GWA105</td>
<td>25"</td>
<td>15"</td>
</tr>
<tr>
<td>GWA140</td>
<td>25"</td>
<td>18"</td>
</tr>
<tr>
<td>GWA175</td>
<td>25"</td>
<td>21"</td>
</tr>
<tr>
<td>GWA210</td>
<td>25"</td>
<td>24"</td>
</tr>
<tr>
<td>GWA245</td>
<td>25"</td>
<td>27"</td>
</tr>
</tbody>
</table>

Flooring and foundation

Flooring

The GWA boiler is approved for installation on combustible flooring, but must never be installed on carpeting. Do not install boiler on carpeting even if foundation is used. Fire can result, causing severe personal injury, death or substantial property damage.

Foundation

1. Provide a solid brick or minimum 2-inch thick concrete foundation paid if any of the following is true:
 - **floor can become flooded.**
 - **the boiler mounting area is not level.**
2. See Table 1 for minimum foundation dimensions.
1 Prepare boiler location continued

Vent system

WARNING
Failure to follow all instructions can result in flue gas spillage and carbon monoxide emissions, causing severe personal injury or death.

Inspect existing chimney before installing boiler. Failure to clean or replace perforated pipe or tile lining will cause severe personal injury or death.

Do not alter boiler draft hood or place any obstruction or non-certified vent damper in breeching or vent system. CSA certification will become void. Flue gas spillage and carbon monoxide emissions will occur causing severe personal injury or death.

The following requirements apply when you remove an existing boiler from a vent system shared with other appliances. If the new boiler will not use the common vent, you must test (as described below) each remaining appliance — operating by itself — to verify that the vent system operates adequately.

When removing boiler from existing common vent system:

At the time of removal of an existing boiler, the following steps shall be followed with each appliance remaining connected to the common venting system placed in operation, while the other appliances remaining connected to the common venting system are not in operation.

a. Seal any unused openings in the common venting system.

b. Visually inspect the venting system for proper size and horizontal pitch and determine there is no blockage or restriction, leakage, corrosion or other deficiencies which could cause an unsafe condition.

c. Test vent system — Inspect all building doors and all doors between the space in which the appliances remaining connected to the common venting system are located and other spaces of the building. Turn on clothes dryers and any appliance not connected to the common venting system. Turn on any exhaust fans, such as range hoods and bathroom exhausts, so that the building will operate at maximum speed. Do not operate a summer exhaust fan. Close fireplace dampers.

d. Place in operation the appliance being inspected. Follow the lighting/operating instructions. Adjust thermostat so appliance will operate continuously.

e. Test for spillage at draft hood relief opening after 5 minutes of main burner operation. Use the flame of a match or candle.

f. After it has been determined that each appliance remaining connected to the common venting system properly vents when tested as outlined above, return doors, windows, exhaust fans, fireplace dampers, and any other gas-burning appliance to their previous conditions of use.

Any improper operation of common venting system should be corrected so the installation conforms with the National Fuel Gas Code, ANSI Z223.1-latest edition. Correct by resizing to approach the minimum size as determined using the appropriate tables in Part 11 of that code. Canadian installations must comply with B149.1 or B149.2 Installation Codes.

Chimney or vent requirements

1. Venting must be installed according to Part 7, "Venting of Equipment", of National Fuel Gas Code, ANSI Z223.1-latest edition and applicable building codes. Canadian installations must comply with B149.1 or B149.2 Installation Codes.

2. See "Ratings" on page 35 for minimum chimney or vent sizes. Chimney or vent termination:

 a. A chimney, or any vent other than a Type B vent with listed vent cap, must extend at least 3 feet above the highest point where it passes through a roof of a building, and at least 2 feet higher than any portion of a building within a horizontal distance of 10 feet.

 b. Type B vents with listed caps may terminate as in Figure 2 if no closer than 8 feet from a vertical wall or similar obstruction.

 c. Otherwise, Type B vents must terminate at least 2 feet above the roof penetration and at least 2 feet higher than any portion of a building within 10 feet.

3. A lined chimney is preferred and must be used when required by local, state, provincial and national codes, laws, regulations and ordinances. Vitreous tile linings with joints that prevent retention of moisture and linings made of noncorrosive materials are best. Advice for flue connections and chimney linings can be obtained from local gas utility. Type B double-wall metal vent pipe or single-wall vent pipe may be used as a liner.

4. Cold masonry chimneys, also known as outside chimneys, typically have one or more walls exposed to outside air. When any atmospheric gas-fired boiler with automatic vent damper is vented through this type of chimney, the potential exists for condensation to occur. Condensation can damage a masonry chimney. Williamson-Thermoflo recommends the following to prevent possible damage.

 b. Provide drain trap to remove any condensate.

5. Where two or more gas appliances vent into a common chimney or vent, equivalent area should be at least equal to area of vent outlet on largest appliance plus 50 percent of vent outlet area of additional appliance.

Figure 2 Terminations with Type B vent fitted with listed vent cap, provided vent is at least 8 feet from any vertical wall or similar obstruction

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Manufacturer’s part number</th>
<th>International Comfort Products part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gas valve, 1/2” x 1/2”, GWA052 through GWA175</td>
<td>Honeywell Robertshaw</td>
<td>VRE20042126</td>
<td>5100443690WT</td>
</tr>
<tr>
<td>2</td>
<td>Gas valve, 1/2” x 1/2”, GWA210 and GWA245</td>
<td>Honeywell Robertshaw</td>
<td>VRE80424050</td>
<td>5100442560WT</td>
</tr>
<tr>
<td>3</td>
<td>Pilot assembly kit with orifice</td>
<td>International Comfort Products</td>
<td>51081005WT</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Tubing, pilot, aluminum</td>
<td></td>
<td>5607425900DT</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Tubing, thermocouple</td>
<td></td>
<td>5172425440</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Transformer relay</td>
<td></td>
<td>5103321657WT</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Wiring harness</td>
<td></td>
<td>591391862WT</td>
<td></td>
</tr>
</tbody>
</table>

Stand-by gas components

1. Gas valve, 1/2” x 1/2”, GWA052 through GWA175
2. Gas valve, 1/2” x 1/2”, GWA210 and GWA245
3. Pilot assembly kit with orifice
4. Tubing, pilot, aluminum
5. Tubing, thermocouple
6. Transformer relay
7. Wiring harness

12 Replacement parts continued

Figure 20 Gas control assembly
12 Replacement parts continued

Table 2 Corrosive contaminants and likely locations

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Manufacturer’s part number</th>
<th>International Comfort Products part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pressure relief valve, ASME, 30 PSIG, ¾” male inlet</td>
<td>Conbraco</td>
<td>10-407-10</td>
<td>511549200WT</td>
</tr>
<tr>
<td></td>
<td>Pressure relief valve, ASME, 30 PSIG, ¾” female inlet (Fittings shown are factory-installed on boiler.)</td>
<td>Watts</td>
<td>10-408-05</td>
<td>511549224WT</td>
</tr>
<tr>
<td>2</td>
<td>Combination pressure-temperature gauge, with 2½” short stem (Fittings shown are included with boiler.)</td>
<td>Amatik</td>
<td>PTA-186G 4104</td>
<td>510218099WT</td>
</tr>
<tr>
<td>3</td>
<td>Drain valve, ¾” (Fittings shown are included with boiler.)</td>
<td>Conbraco</td>
<td>31-606-01</td>
<td>511210423WT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hammond Valve</td>
<td>710 20SF04 8D-2C</td>
<td>511210423WT</td>
</tr>
<tr>
<td>4</td>
<td>Circulator (Fittings shown are shipped loose with boiler.)</td>
<td>Taco</td>
<td>007</td>
<td>511405119WT</td>
</tr>
<tr>
<td>5</td>
<td>Circulator gasket, universal (2 per boiler)</td>
<td>International Comfort Products</td>
<td>590017356WT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Circulator hardware kit, includes: 2 flanges, 4 nuts, 4 screws, 2 pipe nipples — 1” NPT — GWA052 through GWA140 1¼” NPT — GWA175 through GW245</td>
<td>International Comfort Products</td>
<td>381354325WT</td>
<td>511319736WT</td>
</tr>
<tr>
<td>6</td>
<td>Circulator wiring harness</td>
<td>International Comfort Products</td>
<td>381354326WT</td>
<td></td>
</tr>
</tbody>
</table>

Air contamination

Please review the following information on potential combustion air contamination problems.

See Table 2 for products and areas which may cause contaminated combustion air.

To prevent potential of severe personal injury or death, check for products or areas listed below before installing boiler. If any of these contaminants are found:

- Remove contaminants permanently.
- OR —
- Isolate boiler and provide outside combustion air. See national, provincial or local codes for further information.

Table 2

<table>
<thead>
<tr>
<th>Products to avoid</th>
<th>Areas likely to have contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray cans containing chloro-fluorocarbons</td>
<td>Dry cleaning/laundry areas and establishments</td>
</tr>
<tr>
<td>Permanent wave solutions</td>
<td>Swimming pools</td>
</tr>
<tr>
<td>Chlorinated waxes/cleaners</td>
<td>Metal fabrication plants</td>
</tr>
<tr>
<td>Chlorine-based swimming pool chemicals</td>
<td>Beauty shops</td>
</tr>
<tr>
<td>Calcium chloride used for thawing</td>
<td>Refrigeration repair shops</td>
</tr>
<tr>
<td>Sodium chloride used for water softening</td>
<td>Photo processing plants</td>
</tr>
<tr>
<td>Refrigerant leaks</td>
<td>Auto body shops</td>
</tr>
<tr>
<td>Paint or varnish removers</td>
<td>Plastic manufacturing plants</td>
</tr>
<tr>
<td>Hydrochloric acid/muriatic acid</td>
<td>Furniture refinishing areas and establishments</td>
</tr>
<tr>
<td>Cements and glues</td>
<td>New building construction</td>
</tr>
<tr>
<td>Antistatic fabric softeners used in clothes dryers</td>
<td>Remodeling areas</td>
</tr>
<tr>
<td>Chlorine-type bleaches, detergents, and cleaning solvents found in household laundry rooms</td>
<td>Garages with workshops</td>
</tr>
</tbody>
</table>

Air openings

Canadian installations must comply with B149.1 or B149.2 Installation Codes.

See table below for minimum combustion/ventilation air opening sizes. Where openings are required, provide two (2) openings — one within 12 inches of the ceiling, the other within 12 inches of the floor, as shown in the table illustrations.

Table 3

<table>
<thead>
<tr>
<th>Minimum air opening sizes</th>
<th>Required area of the air openings given in this table are free areas — after the surrender for buoyant aspiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Openings Each 1 square inch area for per 4,000 Btu input of other appliances plus GWA input</td>
<td>2 Openings Each 1 square inch area for per 2,000 Btu input of other appliances plus GWA input</td>
</tr>
</tbody>
</table>

1 Prepare boiler location continued

EXCEPTION: NO combustion air openings are needed when the boiler (and other appliances) are installed in a space with a volume NO LESS than 50 cubic feet per 1,000 Btu/h of installed appliances. (The total input of all appliances in Btu/h [1.00% of Btu/h] is multiplied by this number times 50,500,000,000.) Building must not be of "Tight construction" (see below).

Example: For a space of 100,000 Btu/h (500 Btu/h per Btu/h), minimum volume is 50,000 Btu/h x 50,000,000 = 2,500,000 cubic feet. As a height of 4 feet, space must have at least 5,000 — 8,625 square feet (20 feet by 28 feet)., 50,000,000,000 x 50

Tight construction means (per ASHRAE 243): — Walls and ceilings exposed to the outside atmosphere have a continuous water vapor retarder with a rating of 1 perm or less with openings limited. >400 ft. — Weather-stripping has been added on operable windows and doors., AND — Caulking or seals are applied to areas such as joints around windows and door frames, between plates and flues, between wall-venting joints, between wall-joints, at penetrations for plumbing, electrical and gas lines, and other openings.

Note 1: If building is of tight construction and air is taken from inside, as in A, provider two openings in building (outside wall, one within 10 inches of ceiling, the other within 12 inches of floor. Each opening must have a minimum free area of 1 square inch per 1,000 Btu/h of all appliances in the building.)
1 Prepare boiler location continued

Air openings continued

Exhaust fans and air movers
The appliance space must never be under a negative pressure. Always provide air openings sized not only to the dimensions required for the firing rate of all appliances, but also to handle the air movement rate of the exhaust fans or air movers using air from the building or space.

Motorized air dampers
If the air openings are fitted with motorized dampers, electrically interlock the damper to:
• Prevent the boiler from firing if the damper is not fully open.
• Shut the boiler down should the damper close during boiler operation.
To accomplish this interlock, wire an isolated contact (proving the damper open) in series with the thermostat input to the boiler. The boiler will not start if this contact is open, and will shut down should it open during operation.

2 Prepare boiler

Placement and setup
Place boiler/crate near position
1. Leave boiler in crate and on pallet until installation site is ready.
2. Move entire crate and pallet next to selected location.
4. Remove boiler from pallet as follows:
 a. Tilt left side of boiler up and place a board under left legs.
 b. Tilt boiler the other way and place a board under right legs.
 c. Slide boiler backwards off pallet and into position.
3. Level and straighten burners.
 DANGER
 Burners must be properly seated in slots in burner nest with their openings face up. Main burner orifices must inject down center of burner. Failure to properly seat burners will result in severe personal injury, death or substantial property damage.
4. Reinstall access panel.
 CAUTION
 Do not operate boiler without access panel secured in place. Failure to comply could cause momentary flame rollout on ignition of main flame, resulting in possible fire or personal injury hazard.

Inspect orifices and burners
1. Remove front jacket door. Remove base access panel (See Figure 17, item 4, page 30).
2. Check for correctly-sized manifold orifices. See Table 3 for sizing.
 DANGER
 Correctly-sized manifold orifices must be used. Failure to do so will result in severe personal injury, death or substantial property damage.

3. Level and straighten burners.

<table>
<thead>
<tr>
<th>Location</th>
<th>Natural gas</th>
<th>Propane gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. S.</td>
<td>Sea level – 2,000 ft</td>
<td>Sea level – 2,000 ft</td>
</tr>
<tr>
<td></td>
<td>over 2,000 ft (Note 1)</td>
<td>over 2,000 ft (Note 1)</td>
</tr>
<tr>
<td>Canada</td>
<td>Sea level – 2,000 ft</td>
<td>Sea level – 2,000 ft</td>
</tr>
<tr>
<td></td>
<td>over 4,500 ft</td>
<td>over 2,000 ft</td>
</tr>
<tr>
<td></td>
<td># 49</td>
<td>1.30 mm</td>
</tr>
</tbody>
</table>

Note 1: For U. S. elevations above 2,000 feet, contact your International Comfort Products supplier for details.

4. Reinstall access panel.

12 Replacement parts continued

Figure 18 Jacket assembly

<table>
<thead>
<tr>
<th>Description</th>
<th>International Comfort Products part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction box, 4 x 4</td>
<td>GWA052 & GWA070</td>
</tr>
<tr>
<td>Junction box, 2 x 4</td>
<td>GWA105 & GWA125</td>
</tr>
<tr>
<td>Jacket panel, left side, with insulation</td>
<td>GWA205 & GWA245</td>
</tr>
<tr>
<td>Jacket panel, right side, with insulation</td>
<td>431223426WT</td>
</tr>
<tr>
<td>Jacket panel, door</td>
<td>431223450WT</td>
</tr>
<tr>
<td>Jacket panel rear, with insulation</td>
<td>431223451WT</td>
</tr>
<tr>
<td>Jacket panel rear, with insulation</td>
<td>431223452WT</td>
</tr>
<tr>
<td>Jacket panel rear, with insulation</td>
<td>431223453WT</td>
</tr>
<tr>
<td>Jacket panel rear, with insulation</td>
<td>431223454WT</td>
</tr>
</tbody>
</table>

The boiler contains ceramic fiber and fiberglass materials. Use care when handling these materials per instructions on page 23 of this manual. Failure to comply could result in severe personal injury.
Perform hydrostatic pressure test

Pressure test boiler before attaching water or gas piping or electrical supply (except as noted below).

Prepare boiler for test
1. Remove the shipping nipple (from GWA supply tapping) and remove the boiler relief valve. Temporarily plug the relief valve tapping with a ¾” NPT pipe plug.
2. Remove 1¼” nipple, reducing tee and drain valve from accessory bag. Install in boiler return connection as shown on in Figure 19, item 3, page 32. Install circulator on either the supply or return.
3. Remove 1¼” nipple, 1¼” tee, bushing and pressure/temperature gauge from accessory bag. Pipe to boiler supply connection as shown in Figure 19, item 2, page 32. (Use pipe dope sparingly.)
4. Connect a hose to boiler drain valve, the other end connected to a fresh water supply. Make sure hose can also be used to drain boiler after test.
5. Connect a nipple and shutoff valve to system supply connection on the 1¼” tee. This valve will be used to bleed air during the fill. (Valve and nipple are not included with boiler.)
6. Connect a nipple and shutoff valve to system return connection at circulator flange if circulator installed on return. This valve will be used to bleed air during the fill. (Valve and nipple are not included with boiler.)
7. Temporarily plug the air elimination tapping (next to supply tapping).

Pressure test
1. Open the shutoff valves you installed on supply and return connections.
2. Slowly open boiler drain valve and fresh water supply to fill boiler with water.
3. When water flows from shutoff valves, close boiler drain valve.
5. Slowly reopen boiler drain valve until test pressure of not more than 45 psi is reached on the pressure/temperature gauge.
6. Test at no more than 45 psi for no more than 10 minutes.

Drain and remove fittings
1. Disconnect fill water hose from water source.
2. Drain boiler at drain valve or out hose, whichever provides best access to drain. Remove hose after draining if used to drain boiler.
3. Remove nipples, valves and plus unless they will remain for use in the system piping.
4. Remove plug from relief valve tapping. See Section 3, page 10, to replace relief valve.
2 Prepare boiler

Draft hood & spill switch

Draft hood installation
1. Orient draft hood with spill switch mounting holes to front of boiler as shown in Figure 3.
2. Secure draft hood to outlet at top of boiler with sheet metal screws.
3. Bottom of draft hood or skirt must have clearance dimension above jacket top panel as indicated on draft hood.

DANGER
Do not alter boiler draft hood or place any obstruction or non-approved vent damper in breaching or vent system. CSA certification will become void. Flue gas spillage and carbon monoxide emissions will occur causing severe personal injury or death.

WARNING
Improper orientation of spill switch may cause boiler to shut down. The loss of heat can result in significant damage due to freezing.

Spill switch installation
1. Fasten spill switch to draft hood as shown in Figure 3.
2. See Wiring diagram to connect wires:
 a. Standing pilot boiler — see page 19.
 b. Spark-ignited pilot boiler — see Control Supplement.

Install vent piping
1. Connect from draft hood or vent damper outlet to chimney or vent with same size vent connector.
2. Where possible, vertical venting to the outside from the draft hood or vent damper outlet will offer better performance.
3. Where horizontal vent connector is used, slope upward at least 1/4” per lineal foot toward chimney or vent and support with hangers to prevent sagging.
4. Breaching must not be connected to any portion of a mechanical draft system that can operate under positive pressure.

WARNING
Long horizontal vent connector, excessive number of elbow or tee, or other obstructions that restrict the flow of combustion gases should be avoided. Severe personal injury, death or substantial property damage could result.

Vent damper

NOTICE
These systems are used on gas-fired boilers with vent dampers as shipped from factory. Boiler will not operate without vent damper installed.

Only vent dampers listed in the Replacement parts list on page 29 are certified for use with GWA boilers. Any other vent damper installed could cause severe personal injury or death.

Damper blade

Standing pilot ignition systems—See vent manufacturer’s instructions to install plug (shipped with damper) in damper hole. For standing pilot boilers only, install plug with 3/4” diameter hole in vent damper hole.

Spark-ignited pilot systems—See vent manufacturer’s instructions to install plug (shipped with damper) in damper hole. For spark-ignited pilot boilers only, install plug with no hole in vent damper hole.

Minimum clearances

Provide a minimum of 6” between the vent damper and any combustible material. (See ‘Minimum clearance to combustible materials’, page 3, for minimum clearance from jacket top to ceiling to maintain this dimension.)

Draft hood & spill switch

Spill switch installation
1. Fasten spill switch to draft hood as shown in Figure 3.
2. See Wiring diagram to connect wires:
 a. Standing pilot boiler — see page 19.
 b. Spark-ignited pilot boiler — see Control Supplement.
11 Troubleshooting continued

Chart 1 — Standing pilot — Boiler will not fire

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Is damper harness securely plugged in at both ends?</td>
</tr>
<tr>
<td>2</td>
<td>Is 24VAC present across transformer terminals C & Y?</td>
</tr>
<tr>
<td>3</td>
<td>Is damper harness securely plugged in at both ends?</td>
</tr>
<tr>
<td>4</td>
<td>Is 24VAC present across gas valve terminals?</td>
</tr>
<tr>
<td>5</td>
<td>Check connections.</td>
</tr>
<tr>
<td>6</td>
<td>Check/repair out of round stack section.</td>
</tr>
<tr>
<td>7</td>
<td>Does vent damper rotate open?</td>
</tr>
<tr>
<td>8</td>
<td>Is main flame on now?</td>
</tr>
<tr>
<td>9</td>
<td>Is gas valve cock turned to ON position?</td>
</tr>
<tr>
<td>10</td>
<td>Turn gas valve cock to ON position.</td>
</tr>
<tr>
<td>11</td>
<td>Replace gas valve.</td>
</tr>
<tr>
<td>12</td>
<td>Replace damper wiring harness.</td>
</tr>
<tr>
<td>13</td>
<td>Reinstall jumper between terminal 2 and terminal 5 on damper plug in boiler wiring harness.</td>
</tr>
<tr>
<td>14</td>
<td>Does boiler fire?</td>
</tr>
<tr>
<td>15</td>
<td>Remove damper harness from damper harness plug.</td>
</tr>
<tr>
<td>16</td>
<td>TEMPORARILY install jumper between terminal 2 and terminal 5 on damper plug in boiler wiring harness.</td>
</tr>
<tr>
<td>17</td>
<td>Does boiler fire?</td>
</tr>
<tr>
<td>18</td>
<td>Replace damper actuator.</td>
</tr>
<tr>
<td>19</td>
<td>Replace damper wiring harness.</td>
</tr>
<tr>
<td>20</td>
<td>Reinstall jumper between terminal 2 and terminal 5 on damper plug in boiler wiring harness.</td>
</tr>
<tr>
<td>21</td>
<td>Does boiler fire?</td>
</tr>
<tr>
<td>22</td>
<td>Replace damper wiring harness.</td>
</tr>
<tr>
<td>23</td>
<td>Replace damper actuator.</td>
</tr>
</tbody>
</table>

2 Prepare boiler continued

Vent damper continued

WARNING

FORCING A MISMATCH CAN CAUSE A HAZARDOUS CONDITION.

Key

- **Keyway**
- **Key**

Figure 4 Vent damper assemblies

Effikal damper

- Johnson Controls damper

CAUTION

- Keep wiring harness clear of all hot surfaces. Wire insulation could be damaged, causing risk of electrical short-circuit.

1. Install vent damper horizontally or vertically as shown in vent damper manufacturer’s instructions. Vent damper must be installed so that it serves only one boiler and so damper blade indicator is visible to the user. See Figure 4.

2. Screws or rivets used to secure the vent damper to the draft hood must not interfere with rotation of the damper blade.

3. Install damper harness between damper actuator and hole in jacket left side panel. See Figure 3, page 8.

4. Read and apply the harness plug warning label (shown upper-left) so that it is visible after installation.

5. Plug damper harness receptacle into damper harness plug.

Bypassing (jumpering) vent damper will cause flue products such as carbon monoxide to escape into the house. This will cause severe personal injury or death.

Notice

- Damper hold open switch must be in Automatic Operation position for system to operate properly.
11 Troubleshooting

In event of vent damper failure:

Effika vent damper

If troubleshooting chart recommends replacing actuator and actuator is not immediately available, damper blade can be fixed in an open position to allow boiler operation. Manually turning blade can cause actuator damage. Follow these instructions only in case of no heat or damper actuator malfunction.

1. Move damper service switch to Hold Damper Open position. Apply call for heat to boiler. Damper blade should then rotate to Open position and boiler will fire.
2. If step 1 does not open damper, manually rotate damper blade to open position using wrench or pliers on flat shaft between damper and actuator. Boiler will fire. Verify that damper service switch is in Hold Damper Open position. (Figure 15)
3. Do not leave vent damper permanently in this position. Replace actuator immediately. If vent damper is left in Open position, boiler will not operate at published efficiencies.

Johnson Controls vent damper

If troubleshooting chart recommends replacing actuator and actuator is not immediately available, damper blade can be fixed in an open position to allow boiler operation. Follow these instructions only in case of no heat or damper actuator malfunction. See Figure 15.

1. Turn off power to boiler.
2. See vent damper manufacturer’s instructions for procedure to fix vent damper in open position.
3. Turn on power to boiler.
4. Using wrench or pliers on flat shaft section, manually rotate damper blade until green light turns on. Boiler will fire. (Figure 15)
5. Do not leave vent damper permanently in this position. Replace actuator immediately. If vent damper is left in Open position, boiler will not operate at published efficiencies.

Troubleshooting sequence:

1. Before proceeding, check for:
 a. Loose connections, blown fuse or service switch off?
 b. Limit switch set below boiler water temperature?
 c. Thermostat set below room temperature?
 d. Gas not turned on at meter or boiler?
 e. Incoming gas pressure less than: 5" w.c. for natural gas; 11" w.c. for propane gas?
 f. If all of the above check correctly, check gas pressures:
 a. With boiler off:
 i. 13" w.c. maximum natural or propane gas pressure upstream of gas valve.
 b. With boiler on:
 i. 5" w.c. minimum natural gas pressure or 11" w.c. propane gas pressure upstream of gas valve.
 ii. 35" w.c. minimum natural gas pressure or 10" w.c. propane gas pressure downstream tapping on gas valve — Can be adjusted by regulator on gas valve.
 iii. If gas pressure is incorrect or gas is not available to boiler, contact gas supplier to correct before proceeding further.

 a. If gas is available and you cannot obtain a pilot flame, try purging the gas line and cleaning pilot and pilot gas tubings. Follow “Lighting instructions” again. If you still cannot obtain a flame, replace pilot burner and gas tubing. If this does not allow you to obtain a pilot flame, replace gas valve.
 b. If you obtain a pilot flame, but pilot will not remain on, replace thermocouple. If this does not correct problem, replace gas valve and pilot burners.
 c. If pilot stays on, but main gas will not come on, proceed to page 28.

Before troubleshooting:

1. Have the following items:
 a. Voltmeter that can check 120 VAC and 24 VAC.
 b. Microamperimeter with a scale range of 0–10.
 c. Continuity checker.
 d. U-tube manometer.

2. Check for 120 VAC (minimum 102 VAC to maximum 132 VAC) to boiler.
3. Make sure thermostat is calling for heat and contacts (including appropriate zone controls) are closed. Check for 24 VAC between thermostat wire nuts and ground.

Circulator

The circulator is shipped loose (wiring pre-attached to boiler) to allow you to locate it either in the return or supply piping, as desired. See page 11 for a typical installation. Pipe the expansion tank to the suction side of the circulator whenever possible. Install an air separator in the supply piping. Connect the expansion tank to the air separator only if the separator is on the suction side of the circulator. Always install the system fill connection at the same point as the expansion tank connection to the system. Figures 5 and 6 show typical near-boiler piping connections.

Expansion tank

Diaphragm-type or bladder-type expansion tank — Figure 5

1. Ensure expansion tank size will handle boiler and system water volume and temperature. Tank must be located in boiler return piping as close to boiler as possible, before inlet side of circulator. See tank manufacturer’s instructions for details.
2. Install an automatic air vent as shown.

Closed-type expansion tank — Figure 6

1. Ensure expansion tank size will handle boiler and system water volume and temperature. See tank manufacturer’s instructions for details.
2. Connect tank to 1/2" NPT tapping located behind supply outlet, using 1/2" NPT piping. Pitch any horizontal piping up towards tank 1 inch per 5 feet of piping.

Water piping — multiple zone systems

Install system piping using either circulator zoning or zone valve zoning. Install expansion tank on suction side of system circulator. Always connect fill line only at the expansion tank — never at another point in the system.

3 Install water piping

General

If installation is to comply with ASME or Canadian requirements, an additional high temperature limit is needed. Install control in supply piping between boiler and isolation valve. Set second control to minimum 20°F above first control setpoint. Maximum allowable setpoint is 240°F. See page 19 for wiring.

A low water cutoff device is required when boiler is installed above radiation level or by certain state or local codes or insurance companies. Use low water cutoff designed for water installations.

Electrode probe type is recommended. Purchase and install in tee supply piping above boiler.

Use backflow check valve in cold water supply if required by local codes.

Near-boiler piping continued

<table>
<thead>
<tr>
<th>Boiler model number</th>
<th>To system</th>
<th>From system</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWA2052</td>
<td>1/4"</td>
<td>1/4"</td>
</tr>
<tr>
<td>GWA070</td>
<td>1"</td>
<td>1"</td>
</tr>
<tr>
<td>GWA105</td>
<td>1"</td>
<td>1"</td>
</tr>
<tr>
<td>GWA140</td>
<td>1"</td>
<td>1"</td>
</tr>
<tr>
<td>GWA175</td>
<td>11/4"</td>
<td>11/4"</td>
</tr>
<tr>
<td>GWA210</td>
<td>11/4"</td>
<td>11/4"</td>
</tr>
<tr>
<td>GWA245</td>
<td>11/4"</td>
<td>11/4"</td>
</tr>
</tbody>
</table>

Near-boiler piping

See Table 4 and Figure 5 (diaphragm-type or bladder type expansion tank) or Figure 6 (closed-type expansion tank) on page 11 for near-boiler piping for systems designed for return water at least 130°F. See page 12 (Figures 8 and 9) for near-boiler piping for low-temperature or high-volume systems. See page 11 (Figure 7) for boilers used with refrigeration systems.

Relief valve

Install relief valve vertically in 1/4" tapping on side of boiler. See the tag attached to the relief valve for manufacturer’s instructions.

To avoid water damage or scalding due to valve operation, discharge line must be connected to relief valve outlet and run to a safe place of disposal. Terminals and fittings are required to eliminate possibility of severe burns should the valve discharge.

- Discharge line must be as short as possible and be the same size as the valve discharge connection throughout its entire length.
- Discharge line must pitch downward from the valve and terminate at least 6" above the floor drain where any discharge will be clearly visible.
- The discharge line shall terminate plain, not threaded, with a material serviceable for temperatures of 375°F or greater.
- Do not pipe the discharge to any place where freezing could occur.
- No shut-off valve shall be installed between the relief valve and boiler, or in the discharge line. Do not plug or place any obstruction in the discharge line.
- Failure to comply with the above guidelines could result in failure of the relief valve to operate, resulting in possibility of severe personal injury, death or substantial property damage.
- Test the operation of the valve after filling and pressurizing system by lifting the lever. Make sure this valve discharges freely. If the valve fails to operate correctly, replace it with a new relief valve.

Water pipe size (based on 20°F rise)

<table>
<thead>
<tr>
<th>Boiler model number</th>
<th>Water pipe size (based on 20°F rise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWA2052</td>
<td>1/4"</td>
</tr>
<tr>
<td>GWA070</td>
<td>1"</td>
</tr>
<tr>
<td>GWA105</td>
<td>1"</td>
</tr>
<tr>
<td>GWA140</td>
<td>1"</td>
</tr>
<tr>
<td>GWA175</td>
<td>11/4"</td>
</tr>
<tr>
<td>GWA210</td>
<td>11/4"</td>
</tr>
<tr>
<td>GWA245</td>
<td>11/4"</td>
</tr>
</tbody>
</table>

WARNING

- Never jumper (bypass) rollout thermal fuse element or any other device except for momentary testing as outlined in “Chart 1”, page 28. Severe personal injury, death or substantial property damage can result.
- Always connect fill line only at the expansion tank—never at another point in the system.

**Diaphragm-type or bladder-type expansion tank **

CAUTION Undersized expansion tanks cause system water to be lost from relief valve and makeup water to be added through fill valve. Eventual section failure can result.

Water piping — multiple zone systems

Install system piping using either circulator zoning or zone valve zoning. Install expansion tank on suction side of system circulator. Always connect fill line only at the expansion tank — never at another point in the system.

Table 4

<table>
<thead>
<tr>
<th>Boiler model number</th>
<th>To system</th>
<th>From system</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWA2052</td>
<td>1/4"</td>
<td>1/4"</td>
</tr>
<tr>
<td>GWA070</td>
<td>1"</td>
<td>1"</td>
</tr>
<tr>
<td>GWA105</td>
<td>1"</td>
<td>1"</td>
</tr>
<tr>
<td>GWA140</td>
<td>1"</td>
<td>1"</td>
</tr>
<tr>
<td>GWA175</td>
<td>11/4"</td>
<td>11/4"</td>
</tr>
<tr>
<td>GWA210</td>
<td>11/4"</td>
<td>11/4"</td>
</tr>
<tr>
<td>GWA245</td>
<td>11/4"</td>
<td>11/4"</td>
</tr>
</tbody>
</table>
10 Service and maintenance

Check/test

Diaphragm- or bladder-type — welded gas tight with a rubber membrane to separate the tank pressurizing air and the water. May be located at any point in the system, but most often found near the boiler.

- Systems with this type of expansion tank require at least one automatic air vent, preferably located on top of an air eliminator, as shown in examples in Section 3, page 10, on page 10.

2. If relief valve has tended to weep frequently, the expansion tank may be waterlogged or undersized.

Closed-type tank — most is likely waterlogged. Install a tank fitting if not already installed. Then check fill level per filling manufacturer’s instructions. If fill level is correct, check tank size against manufacturer’s instructions. Replace with a larger tank if necessary.

Diaphragm- or bladder-type — first, check tank size to be sure it is large enough for the system. If size is too small, add additional tank(s) as necessary to provide sufficient expansion. If tank size is large enough, remove tank from system and check charge pressure (usually 12 psig for residential applications). If tank will hold pressure, membrane has been damaged. Replace tank.

Boiler relief valve

1. Inspect the relief valve and lift the lever to verify flow as in the following warnings, excerpted from a relief valve manufacturer’s warning label. Before operating any relief valve, ensure that it is piped with its discharge in a safe area to avoid severe scald potential. Read Manual Section 3, page 10, before proceeding further.

Safety relief valves should be reinspected AT LEAST ONCE EVERY THREE YEARS, by a licensed plumbing contractor or authorized inspection agency, to ensure that the product has not been affected by corrosive water conditions and to ensure that the valve and discharge line have not been altered or tampered with illegally. Certain naturally occurring conditions may corrode the valve or its components over time, rendering the valve inoperative. Such conditions may not be detectable unless the valve and its components are physically removed and inspected. This inspection must only be conducted by a plumbing contractor or authorized inspection agency — not by the owner. Failure to reinspect the boiler relief valve as directed could result in unsafe pressure buildup, which can result in severe personal injury, death or substantial property damage.

Following installation, the valve lever must be operated AT LEAST ONCE A YEAR to ensure that waterways are clear. Certain naturally occurring mineral deposits may adhere to the valve, rendering it inoperative. When manually operating the valve, water will drain and precautions must be taken to avoid contact with hot water and to avoid water damage. Before operating lever, check to see that a discharge line is connected to this valve directing the flow of hot water from the valve to a proper place of disposal otherwise severe personal injury may result. If no water flows, valve is inoperative. Shut down boiler until a new relief valve has been installed.

2. After following the preceding warning directions, if the relief valve weeps or will not seat properly, replace the relief valve. Ensure that the reason for relief valve weeping is the valve and not over-pressurization of the system due to expansion tank waterlogging or undersizing.

Review with owner

1. Refer to the User’s Information Manual with the owner.

- Emphasize the need to perform the maintenance schedule specified in the User’s Information Manual (and in this manual as well).

3. Remind the owner of the need to call in a licensed contractor should the boiler or system exhibit any unusual behavior.

4. Remind the owner to follow the proper shutdown procedure and to schedule an annual start-up at the beginning of the next heating season.

Cleaning boiler heating surfaces

The boiler contains ceramic fiber and fiberglass materials. Use care when handling these materials per instructions on page 23 of this manual. Failure to comply could result in severe personal injury.

1. Shut down boiler:

- Follow “To Turn Off Gas to Appliance” instructions on boiler and “Lighting or Operating Instructions”.

- Do not drain boiler unless it will be exposed to freezing temperatures. If using antifreeze in system, do not drain.

2. Follow shutdown procedure.

3. Remove venting system connection to boiler.

4. Remove top jacket panel. Turn back insulation.

5. Remove flue collector. Clean sealant from assembly and sections.

6. Remove radiation plates hanging between sections.

7. Remove burners from base. Brush and vacuum burners to remove all dust and lint. Verify that all burner ports are free of debris.

8. Place newspapers in base of boiler to collect soot.

9. Clean between sections with wire brush.

10. Remove newspaper and soot. Vacuum or brush base and surrounding area.

13. Insulation and jacket top panel.

3 Install water piping

Near-boiler piping

Diaphragm- or bladder-type expansion tank: Piping to single-zone system using diaphragm-type or bladder-type expansion tank. See Table 4 for piping sizes.

Pressure/temperature gage

Circulator

Automotive air vent

Relief valve

Isolation valve

To system

To diaphragm-type expansion tank

From system

Circulator alternate location

Drain valve

Isolation valve

Temperature/pressure gage

Circulator

Drain valve

Isolation valve

Diaphragm- or bladder-type expansion tank:

- Closed-type expansion tank: Piping to single-zone system using closed-type expansion tank. See Table 4 for piping sizes.

WARNING

Use Figure 5 or Figure 6 only for systems designed for return water at least 130 °F. For systems with low return water temperature possible, such as converted gravity systems and radiant heating systems, install bypass piping (see page 12) to protect boiler against condensation. Failure to prevent low return water temperature to the boiler could cause corrosion of the boiler sections or burners, resulting in severe personal injury, death or substantial property damage.

If system includes radiant heating circuits, provide piping and controls to regulate the temperature supplying the radiant circuits. Failure to comply could result in substantial property damage.

Install boiler so that chilled medium is piped in parallel with heating boiler (Figure 7). Use appropriate valves to prevent chilled medium from entering boiler. Consult I-B-H Installation and Piping Guides. If boiler is connected to heating coils located in air handling units where they can be exposed to refrigerated air, use flow control valves or other automatic means to prevent gravity circulation during cooling cycle. Circulation of cool water through the boiler could result in damage to the heat exchanger, causing possible severe personal injury, death or substantial property damage.

Water piping — refrigeration systems

Prevent chilled water from entering boiler

Install boiler so that chilled medium is piped in parallel with the heating boiler. Use appropriate valves to prevent chilled medium from entering boiler. See Figure 7 for typical installation of balancing valve and check valve.

Figure 5

Figure 6

Figure 7

Piping refrigeration systems
3 Install water piping

Near-boiler piping continued

Figure 8 System bypass piping in boiler loop with separate system circulator, using primary/secondary piping.

Figure 9 Boiler bypass piping — use only for high water content systems — DO NOT use for radiant panel systems.

System bypass method

1. Apply bypass piping of Figure 8 to high water content systems, radiant panel systems or any system that is likely to operate with low return water temperature for extended periods.
2. The bypass arrangement shown protects the boiler from damage caused by condensate corrosion due to low return water temperature. This method does not provide protection from high temperature water being supplied to the system.
3. DO NOT apply this piping to radiant panel systems.
4. Adjust the bypass valves as indicated below.

Adjust Bypass Valves 1 and 2 as follows:

1. Start with valve 2 fully closed, valve 1 fully open.
2. Slowly open valve 2 while closing valve 1. Adjust the valves until the boiler pressure/temperature gauge reads 160 °F or higher. As you open the valves, pause long enough to allow temperatures to level off. It takes a while for the boiler water temperature to rise as the flow changes.
3. Bypass valve 2 allows hot boiler outlet water to blend with colder return water, raising the supply temperature to the boiler. Bypass valve 1 balances the pressure drop through valve 2.
4. The purpose of this piping is to raise the return water temperature to the boiler enough to prevent condensation of flue gases.

Boiler bypass method

1. Apply bypass piping of Figure 9 to high water content systems, such as converted gravity systems.
2. The bypass arrangement shows the boiler from damage caused by condensate corrosion due to low return water temperature. This method does not provide protection from high temperature water being supplied to the system.
3. DO NOT apply this piping to radiant panel systems.
4. Adjust the bypass valves as indicated below.

Adjust Bypass Valves 1 and 2 as follows:

1. Start with valve 1 fully closed, valve 2 fully open.
2. Slowly open valve 1 while closing valve 2. Adjust the valves until the boiler pressure/temperature gauge reads approximately 60 °F higher than the system temperature gauge.
3. Bypass valve 1 controls system flow rate. Bypass valve 2 controls flow through the boiler.
4. The purpose of this piping is to cause a high enough temperature rise in the boiler to ensure they are operational.
5. The cap must be unscrewed one turn to allow air to escape.
6. If the air vent is leaking, remove cap briefly and then release to clean the valve seat.
7. Replace cap by twisting all the way onto valve and then unscrewing one turn.

Check/test.

Service.

1. Inspect automatic air vents (if used). Also inspect air separators installed on system.
2. The cap must be unscrewed one turn to allow air to escape.
3. If the air vent is leaking, remove cap briefly and then release to clean the valve seat.
4. Replace cap by twisting all the way onto valve and then unscrewing one turn.

Limit controls and cutoffs

1. Inspect and test the boiler limit control. Verify operation by turning control set point below boiler temperature. Boiler should cycle off. Return dial to original setting.
2. Inspect and test additional limit controls or low water cutoffs installed on system.

Expansion tank

1. Expansion tanks provide space for water to move in an out as the heating system water expands due to temperature increase or contracts as the water cools. Tanks may be open, closed or diaphragm or bladder type. See Section 3, page 10 of this manual for suggested locations of expansion tanks and air eliminators.
2. Open-type — located above highest radiator or baseboard unit, usually in the attic or closet. Has a gauge glass and overflow pipe to a drain.
3. Closed-type — welded gas tight and located above boiler. Tank is partially filled with water, leaving an air cushion for expansion.

Gas piping

1. Sniff near floor and around boiler area for any indication of a gas leak.
2. Test gas piping using bubble test, per Section 4, page 13 of this manual, if there is any indication of a leak.

Cold fill and operating pressures

1. While the system is cold, note the pressure reading on the boiler pressure/temperature gauge. Verify that cold fill pressure is correct.
2. Watch the pressure as the boiler and system heat up to ensure pressure rise is normal. Too high a rise would indicate a waterlogged or undersized expansion tank.
10 Service and maintenance continued

Inspect

Water piping
1. Check the boiler interior piping and all system piping for signs of leaks.
2. Repair any leaks before proceeding.

Boiler heating surfaces
1. Disconnect the vent pipe at the boiler draft hood and remove draft hood after turning off power to the boiler.
2. Use a bright light to inspect the boiler flue collector and heating surfaces.
3. If the vent pipe or boiler interior surfaces show evidence of soot, follow “Cleaning boiler heating surfaces” in this manual section, page 26. Remove the flue collector and clean the boiler if necessary after closer inspection of boiler heating surfaces.
4. If there is evidence of rusty scale deposits on boiler surfaces, check the water piping and control system to make sure the boiler return water temperature is properly maintained (per this manual).
5. Reconnect vent and draft hood. Replace all boiler components before returning to service.
6. Check inside and around boiler for evidence of any leaks from the boiler. If found, locate source of leaks and repair.

Burners and base
1. After turning off power to the boiler, remove the jacket door and base access panel (Figure 17, item 4, page 30).
2. Inspect burners and all other components in the boiler base.
3. If burners must be cleaned, raise rear of each burner to release from support slot, slide forward and remove. Then brush and vacuum the burners thoroughly, making sure all ports are free of debris. Carefully replace all burners, making sure burner with pilot bracket is replaced in its original position and all burners are upright (ports up).
4. Inspect the base insulation.

Pilot and main burner flames
1. Visually inspect pilot burner and main burner flames as directed under Section 6, page 17 of this manual.

Inspect

Connecting gas supply piping to boiler
1. Remove jacket front panel and see Figure 10 to pipe gas to boiler.
 a. Install drip leg at inlet of gas connection to boiler. Where local utility requires drip leg to be extended to the floor, use appropriate length of nipple between cap and tee.
 b. Install ground joint union for servicing, when required.
 c. Install manual shut off valve in gas supply piping outside boiler jacket when required by local codes or utility requirements.
 d. In Canada—When using manual main shut off valve, it must be identified by the installer.
 e. Support piping with hangers, not by boiler or its accessories.
 f. Purge all air from gas supply piping.
 g. Before placing boiler in operation, check boiler and its gas connection for leaks:
 a. Close manual main shut off valve during any pressure testing at less than 13” w.c.
 b. Disconnect boiler and gas valve from gas supply piping during any pressure testing greater than 13” w.c.

Do not check for gas leaks with an open flame—Use bubble test. Failure to use bubble test or check for gas leaks can cause severe personal injury, death or substantial property damage.

Use pipe dope compatible with propane gases. Apply sparingly only to male threads of pipe joints so that pipe dope does not block gas flow.

Failure to apply pipe dope as described in this manual can result in severe personal injury, death or substantial property damage.

Table 5
<table>
<thead>
<tr>
<th>Pipe capacity for 0.60 specific gravity natural gas</th>
<th>Capacity of pipe for pipe size of:</th>
<th>(Capacity in standard cubic feet gas per hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas pipe length (feet)</td>
<td>1/2”</td>
<td>3/4”</td>
</tr>
<tr>
<td>10</td>
<td>132</td>
<td>278</td>
</tr>
<tr>
<td>20</td>
<td>92</td>
<td>190</td>
</tr>
<tr>
<td>30</td>
<td>73</td>
<td>152</td>
</tr>
<tr>
<td>40</td>
<td>63</td>
<td>130</td>
</tr>
<tr>
<td>50</td>
<td>56</td>
<td>115</td>
</tr>
<tr>
<td>75</td>
<td>45</td>
<td>93</td>
</tr>
<tr>
<td>100</td>
<td>38</td>
<td>79</td>
</tr>
<tr>
<td>150</td>
<td>31</td>
<td>64</td>
</tr>
</tbody>
</table>

Natural Gas:
1. See Table 5 for pipe length and diameter. Base on rated boiler input (divide by 1,000 to obtain cubic feet per hour). Table 5 is only for gas with specific gravity 0.60, with a pressure drop through the gas piping of 0.30” w.c. For additional gas pipe sizing information, see ANSI Z223.1 (B14.9.1 or B14.9.2 for Canadian installations).

2. Inlet pressure required at gas valve inlet:
 - Maximum: 13” w.c.
 - Minimum: 5” w.c.
 - Manifold gas pressure: 3.5” w.c.

3. Install 100% lockup gas pressure regulator in supply line if inlet pressure exceeds 13” w.c. Adjust for 13” w.c. maximum.

Propane Gas:
1. Contact gas supplier to size pipes, tanks and 100% lockup gas pressure regulator.
2. Adjust propane supply regulator provided by gas supplier for 13” w.c. maximum pressure.
3. Inlet pressure required at gas valve inlet:
 - Maximum: 13” w.c.
 - Minimum: 11” w.c.
 - Manifold gas pressure: 10” w.c.

Gas supply piping

Figure 10

Boiler Manual

Part Number 6701 1010 00
5 Field wiring

WARNING
For your safety, turn off electrical power supply at service entrance panel before making any electrical connections to avoid possible electric shock hazard. Failure to do so can cause severe personal injury or death.

NOTICE
Wiring must be N.E.C. Class 1. If rollout thermal fuse element wire as supplied with boiler must be replaced, type 200 °C wire or equivalent must be used. If other original wiring as supplied with boiler must be replaced, use only type 105 °C wire or equivalent. Boiler must be electrically grounded as required by National Electrical Code ANSI/NFPA 70-latest edition.

Electrical installation must comply with:
1. National Electrical Code and any other national, state, provincial or local codes or regulations.
2. In Canada, CSA C22.1 Canadian Electrical Code Part 1, and any local codes.

Wiring connections
Boiler is shipped with controls completely wired, except spill switch and vent damper. See wiring diagram on page 19 for standing pilot ignition boiler or Control Supplement for spark-ignited pilot boiler. Circulator is shipped loose, but wiring harness is pre-attached to the boiler. Connect wires in circulator junction box.

Thermostat
1. Connect thermostat as shown on wiring diagram on boiler.
2. Install on inside wall away from influences of drafts, hot or cold water pipes, lighting fixtures, television, sunrays or fireplaces.
3. If thermostat has a heat anticipator, set heat anticipator in thermostat to match power requirements of equipment connected to it. If connected directly to boiler, set for 0.4 amps. For other devices, see manufacturer's specifications. Wiring diagram on boiler gives setting for control module and gas valve. Also see instructions with thermostat.

Junction box (furnished)
1. Connect 120 VAC power wiring (Figure 11).
2. Fused disconnect or service switch (15 amp. recommended) may be mounted on this box. For those installations with local codes which prohibit installation of fuse disconnect or service switch on boiler, use only type 105 °C wire or equivalent.

Wiring multiple zones
See zone valve manufacturer's literature for wiring and application. A separate transformer is required to power zone valves. Zoning with circulators requires a relay for each circulator.

Figure 11 Field wiring connections — service switch and thermostat (or end switch) provided by installer

10 Service and maintenance

Handling ceramic fiber and fiberglass materials

REMOVAL OF COMBUSTION CHAMBER LINING OR BASE PANELS

The combustion chamber lining or base insulation panels in this product contain ceramic fiber materials. Ceramic fibers can be converted to cristobalite in very high temperature applications. The International Agency for Research on Cancer (IARC) has concluded, "Crystalline silica inhaled in the form of quartz or cristobalite from occupational sources is carcinogenic to humans (Group 1)."

- Avoid breathing dust and contact with skin and eyes.
- Use NIOSH certified dust respirator (N95). This type of respirator is based on the OSHA requirements for cristobalite at the time this document was written. Other types of respirators may be needed depending on the job site conditions. Current NIOSH recommendations can be found on the NIOSH web site at http://www.cdc.gov/niosh/homepage.html. NIOSH approved respirators, manufacturers, and phone numbers are also listed on this web site.
- Wear long-sleeved, loose fitting clothing, gloves, and eye protection.
- Apply enough water to the combustion chamber lining or base insulation to prevent airborne dust.
- Remove combustion chamber lining or base insulation from the boiler and place it in a plastic bag for disposal.
- Wash potentially contaminated clothes separately from other clothing. Rinse clothes washers thoroughly.

NIOSH stated First Aid.
- Eye: Irrigate immediately
- Breathing: Fresh air.

REMOVAL OF FIBERGLASS WOOL — OR —

INSTALLATION OF FIBERGLASS WOOL, COMBUSTION CHAMBER LINING OR BASE PANELS:

This product contains fiberglass jacket insulation and ceramic fiber materials in combustion chamber lining or base panels in gas fired products. Airborne fibers from these materials have been listed by the State of California as a possible cause of cancer through inhalation.

- Avoid breathing dust and contact with skin and eyes.
- Use NIOSH certified dust respirator (N95). This type of respirator is based on the OSHA requirements for fiberglass wool at the time this document was written. Other types of respirators may be needed depending on the job site conditions. Current NIOSH recommendations can be found on the NIOSH web site at http://www.cdc.gov/niosh/homepage.html. NIOSH approved respirators, manufacturers, and phone numbers are also listed on this web site.
- Wear long-sleeved, loose fitting clothing, gloves, and eye protection.
- Operations such as sawing, blowing, tear out, and spraying may generate airborne fiber concentration requiring additional protection.
- Wash potentially contaminated clothes separately from other clothing. Rinse clothes washers thoroughly.

NIOSH stated First Aid.
- Eye: Irrigate immediately
- Breathing: Fresh air.
ANNUAL START-UP

Service technician

- Inspect:
 - Reported problems
 - Boiler area
 - Air openings
 - Flue gas vent system
 - Pilot and main burner flames
 - Water piping
 - Boiler heating surfaces
 - Burners, base and inlet air box

- Service:
 - Oiled-bearing circulators

- Start-up:
 - Perform start-up per manual

- Check/test:
 - Gas piping
 - Cold fill and operating pressures
 - Air vents and air elimination
 - Limit controls and cutoffs
 - Expansion tank
 - Boiler relief valve

- Review:
 - Review with owner

<table>
<thead>
<tr>
<th>Owner maintenance</th>
<th>(see User's Information Manual for instructions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>• Check boiler area</td>
</tr>
<tr>
<td></td>
<td>• Check boiler pressure/temperature gauge</td>
</tr>
<tr>
<td></td>
<td>• Check air openings</td>
</tr>
<tr>
<td>Monthly</td>
<td>• Check boiler piping</td>
</tr>
<tr>
<td></td>
<td>• Check venting system</td>
</tr>
<tr>
<td></td>
<td>• Check boiler relief valve</td>
</tr>
<tr>
<td></td>
<td>• Check automatic air vents (if used)</td>
</tr>
<tr>
<td></td>
<td>• Check pilot and main burner flames</td>
</tr>
<tr>
<td>Periodically</td>
<td>• Test low water cutoff (if used)</td>
</tr>
<tr>
<td>Every 6 months</td>
<td>• Operate relief valve</td>
</tr>
<tr>
<td>End of season</td>
<td>• Shut down procedure</td>
</tr>
</tbody>
</table>

Table 6: Service and maintenance schedules (service technician and owner)

10 Service and maintenance

Follow the “Service and maintenance” procedures given throughout this manual and in component literature shipped with the boiler. See “Read this first” on page 2. Failure to perform the service and maintenance could result in damage to the boiler or system. Failure to follow the directions in this manual and component literature could result in severe personal injury, death or substantial property damage.

6 Start-up

Preparation

Check for gas leaks

Before starting the boiler, and during initial operation, smell near the floor and around the boiler for gas odorant or any unusual odor. Do not proceed with start-up if there is any indication of a gas leak. Repair any leak at once.

Propane boilers only — Your propane supplier mixes an odorant with the propane to make its presence detectable. In some instances, the odorant can fade and the gas may no longer have an odor.

- Propane gas can accumulate at floor level. Smell near the floor for the gas odorant or any unusual odor. If you suspect a leak, do not attempt to light the pilot.
- Use caution when attempting to light the propane pilot. This should be done by a qualified service technician, particularly if pilot outages are common.
- Periodically check the odorant level of your gas.
- Inspect boiler and system at least yearly to make sure all gas piping is leak-tight.
- Consult your propane supplier regarding installation of a gas leak detector. There are some products on the market intended for this purpose. Your supplier may be able to suggest an appropriate device.

Determine if water treatment is needed

Do not use petroleum-based cleaning or sealing compounds in boiler system. Severe damage to boiler can result. Do not use ethylene glycol, automotive or undiluted water will reduce boiler life. Minerals can build up in sections, reducing heat transfer, overheating cast iron, and causing section failure.

Freeze protection (when used)

Use antifreeze made especially for hydronic systems. Inhibited propylene glycol is recommended.

- Determine antifreeze quantity according to system water content. Boiler water content is listed on page 35. Remember to include expansion tank water content.

- Use antifreeze manufacturer's instructions.

- A 50% solution of propylene glycol/water provides maximum protection to about -30 °F.

- Local codes may require back flow preventer or actual disconnection from city water supply.

- When using antifreeze in a system with automatic fill, install a water meter to monitor water makeup. Glycol will leak before the water begins to leak, causing glycol level to drop. Added water will dilute the antifreeze, reducing the freeze protection level.

Fill the system with water

1. Close manual and automatic air vents and boiler drain cock.
2. Fill to correct system pressure. Correct pressure will vary with each application. Typical cold water fill pressure for a residential system is 12 psi.
3. Purge air from system:
 - a. Connect a hose to purge valve or valves, if installed. Route hose to a area where water can drain and be seen.
 - b. Close the boiler or system isolation valve between the purge valve and fill connection to the system.
 - c. Close zone isolation valves.
 - d. Open quick-fill valve on cold water makeup line.
 - e. Open purge valve.
 - f. One zone at a time, open the isolation valves. Allow water to run through the zone, pushing out the air. Run until no noticeable air flow is present. Close the zone isolation valves and proceed with the next zone. Follow this procedure until all zones are purged.
 - g. Close the quick-fill water valve and purge valve and remove the hose. Open all isolation valves. Watch that system pressure rises to correct cold-fill pressure.
 - h. After the system has operated for a while, eliminate any residual air by using the manual air vents located throughout the system.

- Determine if purging valves are not installed in system, open manual air vents in system one at a time, beginning with lowest floor. Close vent when water squirts out. Repeat with remaining vents.
4. Open automatic air vent (diaphragm-type or bladder-type expansion tank systems only) one turn.
5. Open other vents:
 - a. Starting on the lowest floor, open air vents one at a time until water squirts out.
 - b. Repeat with remaining vents.
 - c. Relit to correct pressure.

Inspect system water piping

After filling the boiler and system with water, inspect all piping throughout the system for leaks. If found, repair immediately. This inspection after the boiler has been started and the system has heated up should also be done by a qualified service technician.

Freeze protection (when used)

- Leaks must be repaired at once. Failure to do so can damage the boiler, resulting in substantial property damage.

- Do not use petroleum-based cleaning or sealing compounds in boiler system. Severe damage to boiler will occur, resulting in substantial property damage.

Inspect base insulation

Check to make sure insulation is secure against all four sides of the base. If insulation is damaged or displaced, do not operate boiler. Replace or reposition insulation.

Failure to replace damaged insulation or reposition insulation can result in a fire hazard, causing severe personal injury, death or substantial property damage.

The boiler contains ceramic fiber and fiberglass materials. Use care when handling these materials per instructions on page 23 of this manual. Failure to comply could result in severe personal injury.

GWA Gas-Fired Water Boilers – Boiler Manual
6 Start-up continued

Operate boiler

DO NOT proceed with boiler operation unless boiler and system have been filled with water and all instructions and procedures of previous manual sections have been completed. Failure to do so could result in severe personal injury, death or substantial property damage. Before starting the boiler...

• See pages 20 and 21, for standing pilot boiler "Lighting Instructions", or the Control Supplement for spark-ignited pilot "Operating Instructions."

• Verify the boiler and system are full of water (or glycol/water mixture, if used).

• Verify the "Preparation" procedures of page 15 have been completed.

Start the boiler

Follow the "Lighting or Operating Boiler Instructions" from:

• Spark-ignited pilot boilers — See Control Supplement.

Remove boiler jacket door and note the gas valve manufacturer and model number. See either page 20 or page 21, depending on gas valve installed in boiler. Use only the "Lighting Instruction" which applies to this gas valve. (The "Lighting Instruction" label on the boiler provides the same information.) If boiler fails to start, see "If boiler doesn’t start..." Check for..." on this page.

Check system and boiler

WARNING Eliminate all system leaks. Continual fresh makeup water will reduce boiler life. Minerals can build up in sections, reducing heat transfer, overheating cast iron, and causing section failure.

If you discover evidence of any gas leak, shut down the boiler at once. Find the leak source with bubble test and repair immediately. Do not start boiler again until corrected. Failure to comply could result in severe personal injury, death or substantial property damage.

WARNING Do not use petroleum-based cleaning or sealing compounds on boiler system. Severe damage to boiler will occur, resulting in substantial property damage.

1. Check system piping for leaks. If found, shut down boiler and repair immediately.

2. Vent air from system using manual vents. Air in the system will interfere with circulation and cause heat distribution problems and noise.

3. Inspect vent system thoroughly for signs of deterioration from corrosion, physical damage or sagging. Verify that masonry chimney liners are in good condition, with no obstructions, and there are no openings into the chimney.

4. Check around the boiler for gas odor following the procedure of "Check for gas leaks", page 15.

5. Verify operation using procedures below. Perform "Checkout procedure", page 18, and fill in the "Installation and service certificate".

If boiler doesn’t start... Check for:

1. Loose connections, blown fuse or service switch off?

2. High limit switch set below boiler water temperature?

3. Thermostat set below room temperature?

4. Gas not turned on at meter or boiler?

5. Incoming gas pressure less than: 5" w.c. for natural gas? 11" w.c. for propane gas?

6. If none of the above corrects the problem, see "Troubleshooting", Section 11, page 27.

9 Lighting Instructions — GWA standing pilot boilers

Robertshaw 7200 gas valve

FOR YOUR SAFETY READ BEFORE LIGHTING

WARNING If you do not follow these instructions exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

A. This appliance has a pilot, which must be lighted by hand. When lighting the pilot, follow these instructions exactly.

B. Before LIGHTING, smell all around the appliance area for gas. Be sure to smell next to the floor because some gas is heavier than air and will settle on the floor. See below.

WHAT TO DO IF YOU SMELL GAS

• Do not try to light any appliance.

• Do not touch any electric switch; do not use any phone in your building.

C. Use only your hand to push down the reset button or turn the gas control knob. Never use tools. If the knob or reset button will not operate by hand, don’t try to repair it, call a qualified service technician. Force or attempted repair may result in a fire or explosion.

D. Do not use this appliance if any part has been under water. Immediately call a qualified service technician to inspect the appliance and to replace any part of the control system and any gas control, which has been under water.

LIGHTING INSTRUCTIONS

1. Stop! Read the safety information above on this label.

2. Set the thermostat to lowest setting.

3. When equipped with Effikal vent damper Model RVGP, place service switch in Hold Damper Open position.

4. Turn off all electrical power to the appliance.

5. When equipped with Johnson Controls vent damper Model M35, manually rotate damper blade in direction of arrow to Open position indicated on damper assembly.

6. Depress and move selector arm left → OFF.

7. When equipped with vent damper, verify damper blade is in full open position.

8. Wait five (5) minutes to clear out any gas. Then smell for gas, including near the floor if you smell gas. STOP! Follow "B" in the safety information above. If you don’t smell gas, go to the next step.

T O T UR N OFF G A S TO T H E A PPLI C AT ION

1. Set the thermostat to lowest setting.

2. Turn off all electric power to the appliance if service is to be performed.

3. Remove front panel.

4. Depress and move selector arm left → OFF.

5. Replace front panel.

9 Lighting Instructions — GWA standing pilot boilers

Robertshaw 7200 gas valve

FOR YOUR SAFETY READ BEFORE LIGHTING

WARNING If you do not follow these instructions exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

A. This appliance has a pilot, which must be lighted by hand. When lighting the pilot, follow these instructions exactly.

B. Before LIGHTING, smell all around the appliance area for gas. Be sure to smell next to the floor because some gas is heavier than air and will settle on the floor. See below.

WHAT TO DO IF YOU SMELL GAS

• Do not try to light any appliance.

• Do not touch any electric switch; do not use any phone in your building.

C. Use only your hand to push down the reset button or turn the gas control knob. Never use tools. If the knob or reset button will not operate by hand, don’t try to repair it, call a qualified service technician. Force or attempted repair may result in a fire or explosion.

D. Do not use this appliance if any part has been under water. Immediately call a qualified service technician to inspect the appliance and to replace any part of the control system and any gas control, which has been under water.

LIGHTING INSTRUCTIONS

1. Stop! Read the safety information above on this label.

2. Set the thermostat to lowest setting.

3. When equipped with Effikal vent damper Model RVGP, place service switch in Hold Damper Open position.

4. Turn off all electrical power to the appliance.

5. When equipped with Johnson Controls vent damper Model M35, manually rotate damper blade in direction of arrow to Open position indicated on damper assembly.

6. Depress and move selector arm left → OFF.

7. When equipped with vent damper, verify damper blade is in full open position.

8. Wait five (5) minutes to clear out any gas. Then smell for gas, including near the floor if you smell gas. STOP! Follow "B" in the safety information above. If you don’t smell gas, go to the next step.

T O T UR N OFF G A S TO T H E A PPLI C AT ION

1. Set the thermostat to lowest setting.

2. Turn off all electric power to the appliance if service is to be performed.

3. Remove front panel.

4. Depress and move selector arm left → OFF.

5. Replace front panel.
9 Lighting Instructions — GWA standing pilot boilers

Honeywell VR8200/VR8300 gas valve

FOR YOUR SAFETY READ BEFORE LIGHTING

WARNING

If you do not follow these instructions exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

A. This appliance has a pilot, which must be lighted by hand. When lighting the pilot, follow these instructions exactly.
B. Before LIGHTING, smell all around the appliance area for gas. Be sure to smell next to the floor because some gas is heavier than air and will settle on the floor. See below.
C. Use only your hand to push down the reset button or turn the gas control knob. Never use tools. If the knob or reset button will not operate by hand, don’t try to repair it, call a qualified service technician. Force or attempted repair may result in a fire or explosion.
D. Do not use this appliance if any part has been under water. Immediately call a qualified service technician to inspect the appliance and to replace any part of the control system and any gas control, which has been under water.

WHAT TO DO IF YOU SMELL GAS

• Do not try to light any appliance.
• Do not touch any electric switch; do not use any phone in your building.
• Immediately call your gas supplier from a neighbor’s phone. Follow the gas supplier’s instructions.
• If you cannot reach your gas supplier, call the fire department.

LIGHTING INSTRUCTIONS

1. Stop! Read the safety information above on this label.
2. Set the thermostat to lowest setting.
3. When equipped with Effikal vent damper Model RVG/P, place service switch in Hold Damper Open position.
4. Turn off all electrical power to the appliance.
5. When equipped with Johnson Controls vent damper Model M35, manually rotate damper blade in direction of arrow to Open position indicated on damper assembly.
6. Turn gas control knob clockwise \(\rightarrow \) OFF.
7. When equipped with vent damper, verify damper blade is in full open position.
8. Wait five (5) minutes to clear out any gas. Then smell for gas, including near the floor. If you smell gas, STOP! Follow "B" in the safety information above. If you don’t smell gas, go to the next step.

TOTURN OFF GAS TO THE APPLIANCE

1. Set the thermostat to lowest setting.
2. Turn off all electric power to the appliance if service is to be performed.
3. Remove front panel.
4. Turn gas control knob clockwise \(\rightarrow \) OFF.
5. Replace front panel.

6 Start-up continued

Verify operation

NOTICE

Check the pilot ignition system used for the boiler. The boiler model suffix will contain an “S” for standing pilot or an “T” for spark-ignited pilot. See Section 9, pages 20 and 21, for standing pilot boiler “Lighting Instructions”, or the Control Supplement for spark-ignited pilot “Operating Instructions”.

Check burner flame — Pilot burner

Proper pilot flame (see Figure 12):
1. Blue flame.
2. Inner cone engulphing thermocouple (standing pilot) or pilot flame sensor (spark-ignited pilot).
3. Thermocouple or pilot flame sensor glowing cherry red.

Improper pilot flame:
1. Overfired — Large flame lifting or blowing past pilot flame sensor.
3. Lack of primary air — Yellow flame tip.
4. Incorrectly heated pilot flame sensor.

Check vent damper operation

1. Raise room thermostat to call for heat — Vent damper actuator will slowly open vent damper.
2. When vent damper is fully open — Main gas valve will open and main burners will ignite. (Spark-ignited pilot controls will first light pilot, then allow main burners to ignite.)

DANGER

Vent damper must be fully open before main burners light. If vent damper does not fully open, flue products such as carbon monoxide will escape into house, causing severe personal injury or death.

3. Lower thermostat setting — Main burner flames will go out, then vent damper will close.
4. Repeat Steps 2 through 4 several times to verify operation.
5. Return thermostat to normal setting.
6. Set thermostat heat anticipator setting indicated on wiring diagram.

Check venting system operation

1. With boiler firing, hold a candle or match below lower edge of draft hood "skirt." If flame does not blow out, but burns undisturbed, the vent system is working properly. If flame blows out or flickers severely, the vent system must be checked for obstructions or other causes of improper venting.
7 Checkout procedure

- Boiler and heat distribution units filled with water?
- Automatic air vent, if used, open one full turn?
- Air purged from gas piping? Piping checked for leaks?
- Correctly-sized manifold orifices installed? See Table 3, page 6, to check size and fuel type.
- Correctly sized manifold orifices must be used. Failure to do so will cause severe personal injury, death or substantial property damage.

DANGER

- Followed “Lighting or Operating Instructions” on boiler or in Manual Section 9 or Control Supplement for proper start-up?
- Test limit control — While burners are operating, move indicator on limit control below actual boiler water temperature. Burners should go off while circulator continues to operate. Raise setting on limit control above boiler water temperature and burners should reignite.
- Test additional field installed controls — If boiler has a low water cutoff, additional high limit or other controls, test for operation as outlined by manufacturer. Burners should be operating and should go off when controls are restored. When controls are restored, burners should reignite.
- Button on spill switch pushed in?
- Test ignition system safety device:
 a. Standing pilot — Turn gas cock knob to PILOT position and extinguish pilot flame. Pilot gas flow should stop in less than 3 minutes. Put system back into operation (see Section 6, pages 15-17).
 b. Spark-ignited pilot — Connect manometer to outlet side of gas valve. Start boiler, allowing for normal start-up cycle to occur and main burners to ignite. With main burners on, manually shut off gas supply at manual main shutoff gas valve. Burners should go off. Open manual main shutoff gas valve. Manometer should confirm there is no gas flow. Pilot will reignite, flame sensing element will sense pilot flame and main burners reignite.
 c. Standing pilot boilers: Followup procedures given in this “Lighting or Operating Instructions” when operating or testing the automatic control or limit circuit. When operating or testing the automatic control or limit circuit, the boiler will not ignite until the limit circuit opens. When the limit circuit opens, the main gas valve is de-energized, but electric circuit for any control, such as circulator, will remain energized until a call for heat is received. This control circuit will remain energized while the boiler is heating the water.

8 Sequence of operation — standing pilot boilers

- Set limit control(s) to system temperature requirements. Adjust balancing valves and controls to provide design temperature to system.
- For multiple zones, adjust flow so it is about the same in each zone.
- Cycle boiler with thermostat — Raise to highest setting and verify boiler goes through normal start-up cycle. Lower to lowest setting and verify boiler goes off.
- Measure natural gas input:
 a. Operate boiler 10 minutes.
 b. Turn off other appliances.
 c. At natural gas meter, measure time (in seconds) required to use one cubic foot of gas.
 d. Calculate gas input:

\[
\text{Btu} = \frac{3600 \times 1000}{\text{number of seconds from step } c}
\]

- Calculate gas input:

\[
\frac{3600 \times 1000}{\text{number of seconds from step } c} = \text{Btu} \\
\]

- Proportioned manifold pressure — Spark-ignited pilots should have manifold pressure of 3.5” w.c. and for propane gas should be 10” w.c.
- Test ignition system safety device:
 a. Check manifold gas pressure by connecting manometer to downstream test tapping on main gas valve. Manifold pressure for natural gas should be 3.5” w.c. and for propane gas should be 10” w.c.
 b. Observe several operating cycles for proper operation.
 c. Set room thermostat to desired room temperature.
 d. Fill in installation and service certificate below.
 e. Review all instructions shipped with this boiler with owner or maintenance person. Return instructions to envelope and give to owner or place in pocket inside front panel in boiler.

Follow up procedures given in this manual and “Lighting or Operating Instructions” when operating or testing the automatic control or limit circuit. When operating or testing the automatic control or limit circuit, the boiler will not ignite until the limit circuit opens. When the limit circuit opens, the main gas valve is de-energized, but electric circuit for any control, such as circulator, will remain energized until a call for heat is received. This control circuit will remain energized while the boiler is heating the water.
7 Checkout procedure

- Boiler and heat distribution units filled with water?
- Automatic air vent, if used, open one full turn?
- Air purged from gas piping? Piping checked for leaks?
- Correctly-sized manifold orifices installed? See Table 3, page 6, to check size and fuel type.
- Correctly-sized manifold orifices must be used. Failure to do so will cause severe personal injury, death or substantial property damage.

Followed “Lighting or Operating Instructions” on boiler or in Manual Section 9 or Control Supplement for proper start-up?
- Test limit control — While burners are operating, move indicator on limit control below actual boiler water temperature. Burners should go off while burner continues to operate. Raise setting on limit control above boiler water temperature and burners should re-ignite.
- Test additional field-installed controls — If boiler has a low water cutoff, additional high limit or other controls, test for operation as outlined by manufacturer. Burners should be operating and should go off when controls are restored. When controls are restored, burners should reignite.
- Button on spill switch pushed in?
- Test ignition system safety device:
 a. Standing pilot — Turn gas cock knob to PILOT position and extinguish pilot flame. Pilot gas flow should stop in less than 3 minutes. Put system back into operation (see Section 6, pages 15-17).
 b. Spark-ignited pilot — Connect manifold to outlet side of gas valve. Start boiler, allowing for normal start-up cycle to occur and main burners to ignite. With main burners on, manually shut off gas supply at manual main shutoff gas valve. Burners should go off. Open manual main shut-off gas valve. Manometer should confirm there is no gas flow. Pilot will reignite, flame sensing element will sense pilot flame and main burners reignite.

- Set limit control(s) to system temperature requirements. Adjust balancing valves and controls to provide design temperature to system.
- For multiple zones, adjust flow so it is about the same in each zone.
- Cycle boiler with thermostat — Raise to highest setting and verify boiler goes through normal start-up cycle. Lower to lowest setting and verify boiler goes off.

- Measure natural gas input:
 a. Operate boiler 15 minutes.
 b. Turn off other appliances.
 c. At natural gas meter, measure time (in seconds) required to use one cubic foot of gas.
 d. Calculate gas input:

\[
\frac{3600 \times 1000}{\text{number of seconds from step c}} = \text{Btuhr}
\]

- Check manifold gas pressure by connecting manometer to downstream test tapping on main gas valve. Manifold pressure for natural gas should be 3.5” w.c. and for propane gas should be 10” w.c.
- Observe several operating cycles for proper operation.
- Set room thermostat to desired room temperature.
- Fill in installation and service certificate below.
- Review all instructions shipped with this boiler with owner or maintenance person. Return instructions to envelope and give to owner or place in pocket inside front panel in boiler.

8 Sequence of operation — standing pilot boilers

Follow a procedure given in this manual and “Lighting instructions”, when operating the boiler and any required manual, these procedures will maintain system in compliance. See Table 3, page 6, to check size and fuel type.

- Prepare boiler to operate.
- Set limit control(s) to system temperature requirements. Adjust balancing valves and controls to provide design temperature to system.
- Turn off exhausted system.
- Turn gas cock knob to PILOT position
- If boiler has a low water cutoff, additional high limit or other controls, test for operation as outlined by manufacturer. Burners should be operating and should go off when controls are restored. When controls are restored, burners should reignite.
- Button on spill switch pushed in?
- Test ignition system safety device:
 a. Standing pilot — Turn gas cock knob to PILOT position and extinguish pilot flame. Pilot gas flow should stop in less than 3 minutes. Put system back into operation (see Section 6, pages 15-17).

- Test limit control — While burners are operating, move indicator on limit control below actual boiler water temperature. Burners should go off while burner continues to operate. Raise setting on limit control above boiler water temperature and burners should re-ignite.
- Test additional field-installed controls — If boiler has a low water cutoff, additional high limit or other controls, test for operation as outlined by manufacturer. Burners should be operating and should go off when controls are restored. When controls are restored, burners should reignite.
- Button on spill switch pushed in?
- Test ignition system safety device:
 a. Standing pilot — Turn gas cock knob to PILOT position and extinguish pilot flame. Pilot gas flow should stop in less than 3 minutes. Put system back into operation (see Section 6, pages 15-17).
 c. At natural gas meter, measure time (in seconds) required to use one cubic foot of gas.
 d. Calculate gas input:

\[
\frac{3600 \times 1000}{\text{number of seconds from step c}} = \text{Btuhr}
\]

- Check manifold gas pressure by connecting manometer to downstream test tapping on main gas valve. Manifold pressure for natural gas should be 3.5” w.c. and for propane gas should be 10” w.c.
- Observe several operating cycles for proper operation.
- Set room thermostat to desired room temperature.
- Fill in installation and service certificate below.
- Review all instructions shipped with this boiler with owner or maintenance person. Return instructions to envelope and give to owner or place in pocket inside front panel in boiler.

Installation and service certificate

<table>
<thead>
<tr>
<th>Boiler model</th>
<th>Date installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP number</td>
<td></td>
</tr>
</tbody>
</table>

- Installation instructions have been followed.
- Checkout sequence has been performed.
- Above information is certified to be correct.
- Information received and left with owner/maintenance person.

<table>
<thead>
<tr>
<th>Installer</th>
<th>(company)</th>
<th>(address)</th>
<th>(phone)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Installer’s signature)
9 Lighting Instructions — GWA standing pilot boilers

Honeywell VR8200/VR8300 gas valve

FOR YOUR SAFETY READ BEFORE LIGHTING

WARNING

If you do not follow these instructions exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

A. This appliance has a pilot, which must be lighted by hand. When lighting the pilot, follow these instructions exactly.
B. Before LIGHTING, smell all around the appliance area for gas. Be sure to smell next to the floor because some gas is heavier than air and will settle on the floor. See below.
C. Use only your hand to push down the reset button or turn the gas control knob. Never use tools. If the knob or reset button will not operate by hand, don’t try to repair it, call a qualified service technician. Force or attempted repair may result in a fire or explosion.
D. Do not use this appliance if any part has been under water. Immediately call a qualified service technician to inspect the appliance and to replace any part of the control system and any gas control, which has been under water.

WHAT TO DO IF YOU SMELL GAS

- Do not try to light any appliance.
- Do not touch any electric switch; do not use any phone in your building.
- Immediately call your gas supplier from a neighbor’s phone. Follow the gas supplier’s instructions.
- If you cannot reach your gas supplier, call the fire department.

LIGHTING INSTRUCTIONS

1. Stop! Read the safety information above on this label.
2. Set the thermostat to lowest setting.
3. When equipped with Effikal vent damper Model RV/VP, place service switch in Hold Damper Open position.
4. Turn off all electrical power to the appliance.
5. When equipped with Johnson Controls vent damper Model M35, manually rotate damper blade in direction of arrow to Open position indicated on damper assembly.
6. Turn gas control knob clockwise (→) to OFF.
7. When equipped with vent damper, verify damper blade is in full open position.
8. Wait five (5) minutes to clear out any gas. Then smell for gas, including near the floor. If you smell gas, STOP! Follow "B" in the safety section above. If you don’t smell gas, go to the next step.
9. Remove access panel located above burners.
10. Find pilot — follow metal tube from gas control to pilot. The pilot is between two burners behind the access panel.
11. Turn gas control knob counterclockwise (←) to PILOT.
12. Push in red reset button and hold. Immediately light the pilot with a match. Continue to hold reset button in for about one (1) minute after the pilot is lit.
- If reset button stays depressed after release, stop and immediately call your service technician or gas supplier.
- If the pilot will not stay lit after several tries, turn the gas control knob clockwise (→) to OFF and call your service technician or gas supplier.
14. Replace access panel.
15. Turn gas control knob counterclockwise (←) to ON.
16. Turn on all electric power to the appliance.
17. When equipped with Effikal vent damper, place service switch in Automatic Operation position.
18. Set thermostat to desired setting.
19. Replace front panel.

TOTAL TURN OFF GAS TO THE APPLIANCE

1. Set the thermostat to lowest setting.
2. Turn off all electric power to the appliance if service is to be performed.
3. Remove front panel.
4. Turn gas control knob clockwise (→) to OFF.
5. Replace front panel.

6 Start-up continued

Verify operation

Notice
Check the pilot ignition system used for the boiler. The boiler model suffix will contain an "S" for standing pilot or an "I" for spark-ignited pilot. See Section 9, pages 20 and 21, for standing pilot boiler “Lighting Instructions”, or the Control Supplement for spark-ignited pilot “Operating Instructions”.

Check burner flame — Pilot burner

Proper pilot flame (see Figure 12): 1. Blue flame. 2. Inner cone engulfing thermocouple (standing pilot) or pilot flame sensor (spark-ignited pilot). 3. Thermocouple or pilot flame sensor glowing cherry red.

Improper pilot flame:
1. Overfired — Large flame lifting or blowing past pilot flame sensor.
2. Undersired — Small flame. Inner cone not engulfing pilot flame sensor.
3. Lack of primary air — Yellow flame tip.
4. Incorrectly heated pilot flame sensor.

Check vent damper operation

1. Raise room thermostat to call for heat — Vent damper actuator will slowly open vent damper.
2. When vent damper is fully open — Main gas valve will open and main burners will ignite. (Spark-ignited pilot controls will first light pilot, then allow main burners to ignite.) Do not try to repair it, call a qualified service technician. Force or attempted repair may result in a fire or explosion.

Check venting system operation
1. With boiler firing, hold a candle or match below lower edge of draft hood “skirt.” If flame does not blow out, but burns undisturbed, the vent system is working properly. If flame blows out or flickers severely, the vent system must be checked for obstructions or other causes of improper venting.

Figure 12 Typical pilot burner flame

Spark electrode
Inner cone

Figure 13 Typical main burner flame

Check burner flames — Main burner

Proper main burner flame (see Figure 13):
1. Yellow-orange stream may appear (caused by dust).

Improper main burner flame:
1. Overfired — Large flames.
2. Undersired — Small flames.
3. Lack of primary air — Yellow tipping on flames (sooting will occur).
7 Lighting Instructions — GWA standing pilot boilers

Robertshaw 7200 gas valve

FOR YOUR SAFETY READ BEFORE LIGHTING

If you do not follow these instructions exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

WHAT TO DO IF YOU SMELL GAS

• Do not try to light any appliance.
• Do not touch any electric switch; do not use any phone in your building.

LIGHTING INSTRUCTIONS

1. Stop! Read the safety information above on this label.
2. Set the thermostat to lowest setting.
3. When equipped with Effikal vent damper Model RVGP, place service switch in Hold Damper Open position.
4. Turn off all electrical power to the appliance.
5. When equipped with Johnson Controls vent damper Model M35, manually rotate damper blade in direction of arrow to Open position indicated on damper assembly.
6. Depress and move selector arm left \(\rightarrow \) to OFF.
7. When equipped with vent damper, verify damper blade is in full open position.

8. Wait five (5) minutes to clear out any gas. Then smell for gas, including near the floor if you smell gas. STOP! Follow “B” in the safety information above. If you don’t smell gas, go to the next step.

TOTOUGH OFF GASTHEAPPLIANCE

1. Set the thermostat to lowest setting.
2. Turn all electric power to the appliance if service is to be performed.
3. Remove front panel.
4. Depress and move selector arm left \(\rightarrow \) to OFF.
5. Replace front panel.

9 Lighting Instructions — GWA standing pilot boilers

Robertshaw 7200 gas valve

FOR YOUR SAFETY READ BEFORE LIGHTING

If you do not follow these instructions exactly, a fire or explosion may result causing property damage, personal injury or loss of life.

WHAT TO DO IF YOU SMELL GAS

• Do not try to light any appliance.
• Do not touch any electric switch; do not use any phone in your building.

LIGHTING INSTRUCTIONS

1. Stop! Read the safety information above on this label.
2. Set the thermostat to lowest setting.
3. When equipped with Effikal vent damper Model RVGP, place service switch in Hold Damper Open position.
4. Turn off all electrical power to the appliance.
5. When equipped with Johnson Controls vent damper Model M35, manually rotate damper blade in direction of arrow to Open position indicated on damper assembly.
6. Depress and move selector arm left \(\rightarrow \) to OFF.
7. When equipped with vent damper, verify damper blade is in full open position.

8. Wait five (5) minutes to clear out any gas. Then smell for gas, including near the floor if you smell gas. STOP! Follow “B” in the safety information above. If you don’t smell gas, go to the next step.

TOTOUGH OFF GASTHEAPPLIANCE

1. Set the thermostat to lowest setting.
2. Turn all electric power to the appliance if service is to be performed.
3. Remove front panel.
4. Depress and move selector arm left \(\rightarrow \) to OFF.
5. Replace front panel.
6 Start-up

Preparation

Check for gas leaks

Before starting the boiler, and during initial operation, smell near the floor and around the boiler for gas odorant or any unusual odour. Do not proceed with start-up if there is any indication of a gas leak. Repair any leak at once.

1. Propane boilers only — Your propane supplier mixes an odorant with the propane to make its presence detectable. In some instances, the odorant can fade and the gas may no longer have an odor.
2. Propane gas can accumulate at floor level. Smell near the floor for the gas odorant or any unusual smell. If you suspect a leak, do not attempt to light the pilot.
3. Use caution when attempting to light the propane pilot. This should be done by a qualified service technician, particularly if pilot outages are common.
4. Periodically check the odorant level of your gas.
5. Inspect boiler and system at least yearly to make sure all gas piping is leak-tight.
6. Consult your propane supplier regarding installation of a gas leak detector. There are some products on the market intended for this purpose. Your supplier may be able to suggest an appropriate device.

Determine if water treatment is needed

Do not use petroleum-based cleaning or sealing compounds in boiler system. Severe damage to boiler will occur, resulting in substantial property damage.

- All system leaks. Continual fresh makeup water will reduce boiler life. Minerals can build up in sections, reducing heat transfer, overheating cast iron, and causing section failure.

Verify water chemistry

Consult local water treatment companies for unusually hard water areas (above 7 grains hardness) or low pH water conditions (below 7.0). Boiler water pH of 7.0 to 8.5 is recommended.

Freeze protection (when used)

Use antifreeze made especially for hydronic systems. Inhibited propylene glycol is recommended.

1. Do not use ethylene glycol, automotive or undiluted antifreeze. Severe personal injury or death can result.
2. Determine antifreeze quantity according to system water content. Boiler water content is listed on page 35. Remember to include expansion tank water content.
3. A 50% solution of propylene glycol/water provides maximum protection to about -30 °F.
4. Local codes may require back flow preventer or actual disconnection from city water supply.
5. When using antifreeze in a system with automatic fill, install a water meter to monitor water makeup. Glycol will leak before the water begins to leak, causing glycol level to drop. Added water will dilute the antifreeze, reducing the freeze protection level.

Fill the system with water

1. Close manual and automatic air vents and boiler drain cock.
2. Fill to correct system pressure. Correct pressure will vary with each application. Typical cold water fill pressure for a residential system is 12 psi.
3. Purge air from system:
 a. Connect a hose to purge valve or valves, if installed. Route hose to an area where water can drain and be seen.
 b. Close the boiler or system isolation valve between the purge valve and fill connection to the system.
 c. Close the purging or fill system isolation valves.
 d. Open quick-fill valve on cold water makeup line.
 e. Open purge valve.
 f. One zone at a time, open the isolation valves. Allow water to run through the zone, pushing out the air. Run until no noticeable air flow is present. Close the zone isolation valves and proceed with the next zone. Follow this procedure until all zones are purged.
 g. Close the quick-fill water valve and purge valve and remove the hose. Open all isolation valves. Watch that system pressure rises to correct cold-fill pressure.
 h. After the system has operated for a while, eliminate any residual air by using the manual air vents located throughout the system.
 i. If purge valves are not installed in system, open manual air vents in system one at a time, beginning with lowest floor. Close vent when water squirts out. Repeat with remaining vents.
4. Open automatic air vent (diaphragm-type or bladder-type expansion tank systems only) one turn.
5. Open other vents:
 a. Starting on the lowest floor, open air vents one at a time until water squirts out.
 b. Repeat with remaining vents.
6. Refill to correct pressure.

Inspect system water piping

After filling the boiler and system with water, inspect all piping throughout the system for leaks. If found, repair immediately. Repeat this inspection after the boiler has been started and the system has heated up.

- Leaks must be repaired at once. Failure to do so can damage the boiler, resulting in substantial property damage.
- Do not use petroleum-based cleaning or sealing compounds in boiler system. Severe damage to boiler will occur, resulting in substantial property damage.

Inspect base insulation

Check to make sure insulation is secure against all four sides of the base. If insulation is damaged or displaced, do not operate boiler. Replace or reposition insulation.

- Failure to replace damaged insulation or reposition insulation can result in a fire hazard, causing severe personal injury, death or substantial property damage.
- The boiler contains ceramic fiber and fiberglass materials. Use care when handling these materials per instructions on page 23 of this manual. Failure to comply could result in severe personal injury.
5 Field wiring

WARNING
For your safety, turn off electrical power supply at service entrance panel before making any electrical connections to avoid possible electric shock hazard. Failure to do so can cause severe personal injury or death.

NOTICE
Wiring must be N.E.C. Class 1. If rollout thermal fuse element wire as supplied with boiler must be replaced, type 200 °C wire or equivalent must be used. If other original wiring as supplied with boiler must be replaced, use only type 105 °C wire or equivalent.

Boiler must be electrically grounded as required by National Electrical Code ANSI/NFPA 70-latest edition.

Electrical installation must comply with:
1. National Electrical Code and any other national, state, provincial or local codes or regulations.
2. In Canada, CSA C22.1 Canadian Electrical Code Part 1, and any local codes.

Wiring connections
Boiler is shipped with controls completely wired, except spill switch and vent damper. See wiring diagram on page 19 for standing pilot ignition boiler or Control Supplement for spark-ignited pilot boiler. Circulator is shipped loose, but wiring harness is pre-attached to the boiler. Connect wires in circulator junction box.

Use **NIOSH certified dust respirator (N95)**. This type of respirator is based on the OSHA requirements for cristobalite at the time this document was written. Other types of respirators may be needed depending on the job site conditions. Current NIOSH recommendations can be found on the NIOSH web site at http://www.cdc.gov/niosh/homepage.html. NIOSH approved respirators, manufacturers, and phone numbers are also listed on this web site.

Avoid breathing dust and contact with skin and eyes.

- Use NIOSH certified dust respirator (N95). This type of respirator is based on the OSHA requirements for cristobalite at the time this document was written. Other types of respirators may be needed depending on the job site conditions. Current NIOSH recommendations can be found on the NIOSH web site at http://www.cdc.gov/niosh/homepage.html. NIOSH approved respirators, manufacturers, and phone numbers are also listed on this web site.

- Wear long-sleeved, loose fitting clothing, gloves, and eye protection.

- Apply enough water to the combustion chamber lining or base insulation to prevent airborne dust.

- The combustion chamber lining or base insulation panels in this product contain ceramic fiber materials. Ceramic fibers can be converted to cristobalite in very high temperature applications. The International Agency for Research on Cancer (IARC) has concluded, “Crystalline silica inhaled in the form of quartz or cristobalite from occupational sources is carcinogenic to humans (Group 1).”

- Avoid breathing dust and contact with skin and eyes.
- Use NIOSH certified dust respirator (N95). This type of respirator is based on the OSHA requirements for cristobalite at the time this document was written. Other types of respirators may be needed depending on the job site conditions. Current NIOSH recommendations can be found on the NIOSH web site at http://www.cdc.gov/niosh/homepage.html. NIOSH approved respirators, manufacturers, and phone numbers are also listed on this web site.

- Avoid breathing dust and contact with skin and eyes.

- Wash potentially contaminated clothes separately from other clothing. Rinse clothes washer thoroughly.

NIOSH stated First Aid.
- Eye: Irrigate immediately
- Breathing: Fresh air.

REMOVAL OF COMBUSTION CHAMBER LINING OR BASE PANELS

The combustion chamber lining or base insulation panels in this product contain ceramic fiber materials. Ceramic fibers can be converted to cristobalite in very high temperature applications. The International Agency for Research on Cancer (IARC) has concluded, “Crystalline silica inhaled in the form of quartz or cristobalite from occupational sources is carcinogenic to humans (Group 1).”

- Avoid breathing dust and contact with skin and eyes.
- Use NIOSH certified dust respirator (N95). This type of respirator is based on the OSHA requirements for cristobalite at the time this document was written. Other types of respirators may be needed depending on the job site conditions. Current NIOSH recommendations can be found on the NIOSH web site at http://www.cdc.gov/niosh/homepage.html. NIOSH approved respirators, manufacturers, and phone numbers are also listed on this web site.

- Apply enough water to the combustion chamber lining or base insulation to prevent airborne dust.
- Wash potentially contaminated clothes separately from other clothing. Rinse clothes washer thoroughly.

NIOSH stated First Aid.
- Eye: Irrigate immediately
- Breathing: Fresh air.

REMOVAL OF FIBERGLASS WOOL — OR —

INSTALLATION OF FIBERGLASS WOOL, COMBUSTION CHAMBER LINING OR BASE PANELS:

This product contains fiberglass jacket insulation and ceramic fiber materials in combustion chamber lining or base panels in gas fired products. Airborne fibers from these materials have been listed by the State of California as a possible cause of cancer through inhalation.

- Avoid breathing dust and contact with skin and eyes.
- Use NIOSH certified dust respirator (N95). This type of respirator is based on the OSHA requirements for fiberglass wool at the time this document was written. Other types of respirators may be needed depending on the job site conditions. Current NIOSH recommendations can be found on the NIOSH web site at http://www.cdc.gov/niosh/homepage.html. NIOSH approved respirators, manufacturers, and phone numbers are also listed on this web site.

- Avoid breathing dust and contact with skin and eyes.
- Wash potentially contaminated clothes separately from other clothing. Rinse clothes washer thoroughly.

NIOSH stated First Aid.
- Eye: Irrigate immediately
- Breathing: Fresh air.
10 Service and maintenance continued

Inspect

Water piping

1. Check the boiler interior piping and all system piping for signs of leaks.
2. Repair any leaks before proceeding.

Boiler heating surfaces

1. Disconnect the vent pipe at the boiler draft hood and remove draft hood after turning off power to the boiler.
2. Use a bright light to inspect the boiler flue collector and heating surfaces.
3. If the vent pipe or boiler interior surfaces show evidence of soot, follow “Cleaning boiler heating surfaces” in this manual section, page 26. Remove the flue collector and clean the boiler if necessary after closer inspection of boiler heating surfaces.
4. If there is evidence of rusty scale deposits on boiler surfaces, check the water piping and control system to make sure the boiler return water temperature is properly maintained (per this manual).
5. Reconnect vent and draft hood. Replace all boiler components before returning to service.
6. Check inside and around boiler for evidence of any leaks from the boiler. If found, locate source of leaks and repair.

Burners and base

1. After turning off power to the boiler, remove the jacket door and base access panel. (Figure 11, item 4, page 30).
2. Inspect burners and all other components in the boiler base.
3. If burners must be cleaned, raise rear of each burner to release from support slot, slide forward and remove. Then brush and vacuum the burners thoroughly, making sure all ports are free of debris. Carefully reassemble all burners, making sure burner with pilot bracket is replaced in its original position and all burners are upright (ports up).
4. Inspect the base insulation.

WARNING

The boiler contains ceramic fiber and fiberglass materials. Use care when handling these materials per instructions on page 23 of this manual. Failure to comply could result in severe personal injury.

Gas supply piping

1. Remove jacket front panel and see Figure 10 to pipe gas to boiler.
2. Install a manual main shutoff valve in the gas supply piping outside boiler jacket when required by local codes or utility requirements.
3. In Canada—When using manual main shutoff valve, it must be identified by the installer.
4. Support piping with hangers, not by boiler or its accessories.
5. Purge all air from gas supply piping.

WARNING

Do not check for gas leaks with an open flame—Use bubble test. Failure to use bubble test or check for gas leaks can cause severe personal injury, death or substantial property damage.

Natural Gas:

1. See Table 5 for pipe length and diameter. Base on rated boiler input (divide by 1,000 to obtain cubic feet per hour). Table 5 is only for gas with specific gravity 0.60, with a pressure drop through the gas piping of 0.30” w.c. For additional gas pipe sizing information, see ANSI Z223.1 (B149.1 or B149.2 for Canadian installations).
2. Inlet pressure required at gas valve inlet:
 - Maximum: 13” w.c.
 - Minimum: 5” w.c.
 - Manifold gas pressure: 3.5” w.c.
3. Install 100% lockup gas pressure regulator in supply line if inlet pressure exceeds 13” w.c. Adjust for 13” w.c. maximum.

Propane Gas:

1. Contact gas supplier to size pipes, tanks and 100% lockup gas pressure regulator.
2. Adjust propane supply regulator provided by gas supplier for 13” w.c. maximum pressure.
3. Inlet pressure required at gas valve inlet:
 - Maximum: 13” w.c.
 - Minimum: 11” w.c.
 - Manifold gas pressure: 10” w.c.

Table 5

| Pipe capacity for 0.60 specific gravity natural gas
<table>
<thead>
<tr>
<th>Gas pipe length (feet)</th>
<th>Capacity of pipe for pipe size of: (Capacity in standard cubic feet gas per hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½"</td>
<td>1½" 7" 9" 11" 13" 15"</td>
</tr>
<tr>
<td>10</td>
<td>132 278 520 1050 1600</td>
</tr>
<tr>
<td>20</td>
<td>92 190 350 730 1100</td>
</tr>
<tr>
<td>30</td>
<td>73 152 285 590 860</td>
</tr>
<tr>
<td>40</td>
<td>63 130 245 500 760</td>
</tr>
<tr>
<td>50</td>
<td>56 115 215 440 670</td>
</tr>
<tr>
<td>75</td>
<td>45 93 175 360 545</td>
</tr>
<tr>
<td>100</td>
<td>38 79 150 305 460</td>
</tr>
<tr>
<td>150</td>
<td>31 64 120 250 380</td>
</tr>
</tbody>
</table>

Figure 10

Gas supply piping

Manual main
shutoff valve (when required)

Ground joint union (when required)

Nipple

Pipe Cap
3 Install water piping

Near-boiler piping continued

Figure 8 System bypass piping in boiler loop with separate system circulator, using primary/secondary piping.

Figure 9 Boiler bypass piping — use only for high water content systems — DO NOT use for radiant panel systems.

System bypass method

1. Apply bypass piping of Figure 8 to high water content systems, radiant panel systems or any system that is likely to operate with low return water temperature for extended periods.
2. The bypass arrangement shown protects the boiler from damage due to condensate corrosion caused by low return water temperature. This method does not provide protection from high temperature water being supplied to the system.
3. DO NOT apply this piping to radiant panel systems.
4. Adjust the bypass valves as indicated below.

Adjust Bypass valves 1 and 2 as follows:
1. Start with valve 2 fully closed, valve 1 fully open.
2. Slowly open valve 2 while closing valve 1. Adjust the valves until the boiler pressure/temperature gauge reads 160°F or higher.
3. Bypass valve 2 allows hot boiler outlet water to enter with colder return water, raising the supply temperature to the boiler. Bypass valve 1 balances the pressure drop through valve 2.
4. The purpose of this piping is to raise the return water temperature to the boiler enough to prevent condensation of flue gases.

Install all components specified above and adjust valves as described to prevent low temperature in the boiler. Failure to prevent low water temperature in the boiler could cause corrosion of the boiler sections or burners, resulting in severe personal injury, death or substantial property damage.

10 Service and maintenance

Service

1. Check/test.

Service.-------

Oiled-bearing circulators
1. The circulator shipped with the GWA boiler is water-lubricated. No oiling is required.
2. Check other circulators in the system. Oil any circulators requiring oil, following circulator manufacturer’s instructions. Over-oiling will damage the circulator.

Start-up.-------

1. Perform start-up procedures Section 6, pages 15–17, including “Verify operation” of burners and vent damper on page 17.
2. Verify cold fill pressure is correct and that fill system is working properly.
3. Verify antifreeze level (if used) is at the right concentration and that inhibitor level is correct.
4. Check gas piping, per Manual Section 4, page 13 and Section 6, page 15, verifying no indications of leakage and all piping and connections are in good condition.
5. Read the “Lighting or Operating Instructions” (Manual Section 9, pages 20 and 21 or Control Supplement) applying to the boiler.
6. Start the boiler following the “Lighting or Operating Instructions” (Manual Section 9, pages 20 and 21 or Control Supplement).

Check/test.-------

Gas piping
1. Sniff near floor and around boiler area for any indication of a gas leak.
2. Test gas piping using bubble test, per Section 4, page 13 of this manual, if there is any indication of a leak.

Limit controls and cutoffs
1. Inspect and test the boiler limit control. Verify operation by turning control set point below boiler temperature. Boiler should cycle off. Return dial to original setting.
2. Inspect and test additional limit controls or low water cutoffs installed on system.

Expansion tank
1. Expansion tanks provide space for water to move in an out as the heating system water expands due to temperature increase or contracts as the water cools. Tanks may be open, closed or diaphragm or bladder type. See Section 3, page 10 of this manual for suggested locations of expansion tanks and air eliminators.

Open-type — located above highest radiator or baseboard unit, usually in the attic or closet. Has a gauge glass and overflow pipe to a drain.

Closed-type — welded gas tight and located above boiler. Tank is partially filled with water, leaving an air cushion for expansion. Made from metal, usually stainless steel or copper. Has a gauge glass and overflow pipe to a drain.

Gas-Fired Water Boilers — Boiler Manual

Part Number 670-01 1001 00
10 Service and maintenance

Check/test

Diaphragm- or blade-type — welded gas tight with a rubber membrane to separate the tank pressurizing air and the water. May be located at any point in the system, but most often found near the boiler.

- Systems with this type of expansion tank require at least one automatic air vent, preferably located on top of an air eliminator, as shown in examples Section 3, page 10.

2. If relief valve has tended to weep frequently, the expansion tank may be waterlogged or undersized.

Closed-type tank — tank is most likely waterlogged. Install a tank fitting if not already installed. Then check fill level per filling manufacturer’s instructions. If fill level is correct, check tank size against manufacturer’s instructions. Replace with a larger tank if necessary.

Diaphragm- or blade-type — first, check tank size to be sure it is large enough for the system. If size is too small, add additional tank(s) as necessary to provide sufficient expansion. If tank size is large enough, remove tank from system and check charge pressure (usually 12 psig for residential applications). If tank will hold pressure, membrane has been damaged. Replace tank.

Boiler relief valve

1. Inspect the relief valve and lift the lever to verify flow as in the following warnings, excerpted from a relief valve manufacturer’s warning label. Before operating any relief valve, ensure that it is piped with its discharge in a safe area to avoid severe scald potential. Read Manual Section 3, page 10, before proceeding further.

Safely relief valves should be reinspected AT LEAST ONCE EVERY THREE YEARS, by a licensed plumbing contractor or authorized inspection agency, to ensure that the product has not been affected by corrosive water conditions and to ensure that the valve and discharge line have not been altered or tampered with. Certain naturally occurring conditions may cause the valve or its components to over time, rendering the valve inoperative. Such conditions are detectable unless the valve and its components are physically removed and inspected. This inspection must only be conducted by a plumbing contractor or authorized inspection agency — not by the owner. Failure to reinspect the boiler relief valve as directed could result in unsafe pressure buildup, which can result in severe personal injury, death or substantial property damage.

Following installation, the valve lever must be operated AT LEAST ONCE A YEAR to ensure that water temperatures are clear. Certain naturally occurring mineral deposits may adhere to the valve, rendering it inoperative. When manually operating the lever, water will discharge and precautions must be taken to avoid contact with hot water and to avoid water damage. Before operating lever, check to see that a discharge line is connected to this valve directing the flow of hot water from the valve to a proper place of disposal otherwise severe personal injury may result. If no water flows, valve is inoperative. Shut down boiler until a new relief valve has been installed.

2. After following the preceding warning directions, if the relief valve weeps or will not seat properly, replace the relief valve. Ensure that the reason for relief valve weeping is the valve and not over-pressurization of the system due to expansion tank waterlogging or undersizing.

Review with owner

1. Request the User’s Information Manual with the owner.

2. Emphasize the need to perform the maintenance schedule specified in the User’s Information Manual (and in this manual as well).

3. Remind the owner of the need to call in a licensed contractor should the boiler or system exhibit any unusual behavior.

4. Remind the owner to follow the proper shutdown procedure and to schedule an annual start-up at the beginning of the next heating season.

Cleaning boiler heating surfaces

The boiler contains ceramic fiber and fiberglass materials. Use care when handling these materials per instructions on page 23 of this manual. Failure to comply could result in severe personal injury.

1. Shut down boiler:

• Follow “To Turn Off Gas to Appliance” instructions on boiler and “Lighting or Operating Instructions”.

• Do not drain boiler unless it will be exposed to freezing temperatures. If using antifreeze in system, do not drain.

2. Follow shutdown procedure.

3. Remove venting system connection to boiler.

4. Remove top jacket panel. Turn back insulation.

5. Remove flu collector. Clean sealant from assembly and sections.

6. Remove radiation plates hanging between sections.

7. Remove burners from base. Brush and vacuum burners to remove all dust and lint. Verify that all burner ports are free of debris.

8. Place newspapers in base of boiler to collect soot.

9. Clean between sections with wire flue brush.

10. Remove newspaper and soot. Vacuum or brush base and surrounding area.

12. Replace collector box/transition assembly. Seal with sealant.

13. Insulate insulation and jacket top panel.

3 Install water piping

Near-boiler piping

Figure 5

Diaphragm- or blade-type expansion tank: Piping to single-zone system using diaphragm-type or blade-type expansion tank. See Table 4 for piping sizes.

Inlet water fill

Isolation valve

Automatic air vent

Relief valve

Pressure/temperature gauge

Circulator

Drain valve

From system

To diaphragm-type expansion tank

To wall

Isolation valve

Circulator alternate location

Drain valve

Figure 6

Closed-type expansion tank: Piping to single-zone system using closed-type expansion tank. See Table 4 for piping sizes.

Figure 7

Piping for refrigeration systems

WARNING

Do not drain boiler unless it will be exposed to freezing temperatures. If using antifreeze in system, do not drain.

Safely relief valves should be reinspected AT LEAST ONCE EVERY THREE YEARS, by a licensed plumbing contractor or authorized inspection agency, to ensure that the product has not been affected by corrosive water conditions and to ensure that the valve and discharge line have not been altered or tampered with. Certain naturally occurring conditions may cause the valve or its components to over time, rendering the valve inoperative. Such conditions are detectable unless the valve and its components are physically removed and inspected. This inspection must only be conducted by a plumbing contractor or authorized inspection agency — not by the owner. Failure to reinspect the boiler relief valve as directed could result in unsafe pressure buildup, which can result in severe personal injury, death or substantial property damage.

Inspection must only be conducted by a plumbing contractor or authorized inspection agency — not by the owner. Failure to reinspect the boiler relief valve as directed could result in unsafe pressure buildup, which can result in severe personal injury, death or substantial property damage.

Use Figure 5 or Figure 6 only for systems designed for return water at least 130 °F. For systems with low return water temperature possible, such as converted gravity systems and radiant heating systems, install bypass piping (see page 12) to protect boiler against condensation. Failure to prevent low return water temperature to the boiler could cause corrosion of the boiler sections or burners, resulting in severe personal injury, death or substantial property damage.

If system includes radiant heating circuits, provide piping and controls to regulate the temperature supplying the radiant circuits. Failure to comply could result in substantial property damage.

Install boiler so that chilled medium is piped in parallel with heating boiler (Figure 7). Use appropriate valves to prevent chilled medium from entering boiler. Consult I-B-R Installation and Piping Guidelines.

If boiler is connected to heating coils located in air handling units where they can be exposed to refrigerated air, use flow control valves or other automatic means to prevent gravity circulation during cooling cycle. Circulation of cold water through the boiler could result in damage to the heat exchanger, causing possible severe personal injury, death or substantial property damage.

WARNING

Use Figure 5 or Figure 6 only for systems designed for return water at least 130 °F. For systems with low return water temperature possible, such as converted gravity systems and radiant heating systems, install bypass piping (see page 12) to protect boiler against condensation. Failure to prevent low return water temperature to the boiler could cause corrosion of the boiler sections or burners, resulting in severe personal injury, death or substantial property damage.

If system includes radiant heating circuits, provide piping and controls to regulate the temperature supplying the radiant circuits. Failure to comply could result in substantial property damage.

Install boiler so that chilled medium is piped in parallel with heating boiler (Figure 7). Use appropriate valves to prevent chilled medium from entering boiler. Consult I-B-R Installation and Piping Guidelines.

If boiler is connected to heating coils located in air handling units where they can be exposed to refrigerated air, use flow control valves or other automatic means to prevent gravity circulation during cooling cycle. Circulation of cold water through the boiler could result in damage to the heat exchanger, causing possible severe personal injury, death or substantial property damage.

Use Figure 5 or Figure 6 only for systems designed for return water at least 130 °F. For systems with low return water temperature possible, such as converted gravity systems and radiant heating systems, install bypass piping (see page 12) to protect boiler against condensation. Failure to prevent low return water temperature to the boiler could cause corrosion of the boiler sections or burners, resulting in severe personal injury, death or substantial property damage.

If system includes radiant heating circuits, provide piping and controls to regulate the temperature supplying the radiant circuits. Failure to comply could result in substantial property damage.

Install boiler so that chilled medium is piped in parallel with heating boiler (Figure 7). Use appropriate valves to prevent chilled medium from entering boiler. Consult I-B-R Installation and Piping Guidelines.

If boiler is connected to heating coils located in air handling units where they can be exposed to refrigerated air, use flow control valves or other automatic means to prevent gravity circulation during cooling cycle. Circulation of cold water through the boiler could result in damage to the heat exchanger, causing possible severe personal injury, death or substantial property damage.

Use Figure 5 or Figure 6 only for systems designed for return water at least 130 °F. For systems with low return water temperature possible, such as converted gravity systems and radiant heating systems, install bypass piping (see page 12) to protect boiler against condensation. Failure to prevent low return water temperature to the boiler could cause corrosion of the boiler sections or burners, resulting in severe personal injury, death or substantial property damage.

If system includes radiant heating circuits, provide piping and controls to regulate the temperature supplying the radiant circuits. Failure to comply could result in substantial property damage.

Install boiler so that chilled medium is piped in parallel with heating boiler (Figure 7). Use appropriate valves to prevent chilled medium from entering boiler. Consult I-B-R Installation and Piping Guidelines.

If boiler is connected to heating coils located in air handling units where they can be exposed to refrigerated air, use flow control valves or other automatic means to prevent gravity circulation during cooling cycle. Circulation of cold water through the boiler could result in damage to the heat exchanger, causing possible severe personal injury, death or substantial property damage.

Use Figure 5 or Figure 6 only for systems designed for return water at least 130 °F. For systems with low return water temperature possible, such as converted gravity systems and radiant heating systems, install bypass piping (see page 12) to protect boiler against condensation. Failure to prevent low return water temperature to the boiler could cause corrosion of the boiler sections or burners, resulting in severe personal injury, death or substantial property damage.

If system includes radiant heating circuits, provide piping and controls to regulate the temperature supplying the radiant circuits. Failure to comply could result in substantial property damage.

Install boiler so that chilled medium is piped in parallel with heating boiler (Figure 7). Use appropriate valves to prevent chilled medium from entering boiler. Consult I-B-R Installation and Piping Guidelines.

If boiler is connected to heating coils located in air handling units where they can be exposed to refrigerated air, use flow control valves or other automatic means to prevent gravity circulation during cooling cycle. Circulation of cold water through the boiler could result in damage to the heat exchanger, causing possible severe personal injury, death or substantial property damage.

Use Figure 5 or Figure 6 only for systems designed for return water at least 130 °F. For systems with low return water temperature possible, such as converted gravity systems and radiant heating systems, install bypass piping (see page 12) to protect boiler against condensation. Failure to prevent low return water temperature to the boiler could cause corrosion of the boiler sections or burners, resulting in severe personal injury, death or substantial property damage.

If system includes radiant heating circuits, provide piping and controls to regulate the temperature supplying the radiant circuits. Failure to comply could result in substantial property damage.
3 Install water piping

General

If installation is to comply with ASME or Canadian requirements, an additional high temperature limit is needed. Install control in supply piping between boiler and isolation valve. Set second control to minimum 20°F above setpoint of first control. Maximum allowable setpoint is 240°F. See page 19 for wiring. A low water cutoff device is required when boiler is installed above radiation level or by certain state or local codes or insurance companies. Use low water cutoff designed for water installations. Electrode probe type is recommended. Purchase and install in tee supply piping above boiler. Use backflow check valve in cold water supply if required by local codes.

Near-boiler piping

See Table 4 and Figure 5 (diaphragm-type or bladder-type expansion tank) or Figure 6 (closed-type expansion tank) on page 11 for near-boiler piping for systems designed for return water at least 130°F. See page 12 (Figures 8 and 9) for near-boiler piping for low-temperature or high-volume systems. See page 11 (Figure 7) for boilers used with refrigeration systems.

Relief valve

Install relief valve vertically in ¾” tapping on side of boiler. See the tag attached to the relief valve for manufacturer’s instructions. To avoid water damage or scalding due to valve operation, discharge line must be connected to relief valve outlet and run to a safe place of disposal. Terminate discharge line to eliminate possibility of severe burns should the valve discharge. • Discharge line must be as short as possible and be the same size as the valve discharge connection throughout its entire length.

- Discharge line must pitch downward from the valve and terminate at least 6” above the floor drain where any discharge will be clearly visible.

- The discharge line shall terminate plain, not threaded, with a material serviceable for temperatures of 375°F or greater.

- Do not plug the discharge to any place where freezing could occur.

- No shut-off valve shall be installed between the relief valve and boiler, or in the discharge line. Do not plug or place any obstruction in the discharge line.

- Failure to comply with the above guidelines could result in failure of the relief valve to operate, resulting in possibility of severe personal injury, death or substantial property damage.

- Test the operation of the valve after filling and pressurizing system by lifting the lever. Make sure that the valve discharges freely. If the valve fails to operate correctly, replace it with a new relief valve.

Water piping — multiple zone systems

Install system piping using either circulator zoning or zone valve zoning. Install expansion tank on suction side of system circulator. Always connect fill line only at the expansion tank — never at another point in the system.

Near-boiler piping continued

| Water pipe size (based on 20°F rise) |
|--------------------------|----------------|----------------|
| Boiler model number | To system | From system |
| GWA 052 | 1 | 1 |
| GWA 070 | 1 | 1 |
| GWA 105 | 1 | 1 |
| GWA 140 | 1 | 1 |
| GWA 175 | 1 1/4 | 1 1/4 |
| GWA 210 | 1 1/4 | 1 1/4 |
| GWA 245 | 1 1/4 | 1 1/4 |

Circulator

The circulator is shipped loose (wiring pre-attached to boiler) to allow you to locate it either in the return or supply piping, as desired. See page 11 for a typical installation. Pipe the expansion tank to the suction side of the circulator whenever possible. Install an air separator in the supply piping. Connect the expansion tank to the air separator only if the separator is on the suction side of the circulator. Always install the system fill connection at the same point as the expansion tank connection to the system. Figures 5 and 6 show typical near-boiler piping connections.

Expansion tank

Diaphragm-type or bladder-type expansion tank — Figure 5

1. Ensure expansion tank size will handle boiler and system water volume and temperature. Tank must be located in boiler return piping as close to boiler as possible, before inlet side of circulator. See tank manufacturer’s instructions for details.

2. Install an automatic air vent as shown.

Closed-type expansion tank — Figure 6

1. Ensure expansion tank size will handle boiler and system water volume and temperature. See tank manufacturer’s instructions for details.

2. Connect tank to ½” NPT tapping located behind supply outlet, using ½” NPT piping. Pitch any horizontal piping up towards tank 1 inch per 5 feet of piping.

Water pressure — multiple zone systems

Install system piping using either circulator zoning or zone valve zoning. Install expansion tank on suction side of system circulator. Always connect fill line only at the expansion tank — never at another point in the system.

11 Troubleshooting

Troubleshooting sequence:

1. Before proceeding, check for:
 - Loose connections, blown fuse or service switch off?
 - High limit switch set below boiler water temperature?
 - Thermostat set below room temperature?
 - Gas not turned on at meter or boiler?
 - Incoming gas pressure less than: 5” w.c. for natural gas? 11” w.c. for propane gas?

2. If all of the above check correctly, check gas pressures:
 - With boiler off:
 - 13” w.c. maximum natural or propane gas pressure upstream of gas valve.
 - With boiler on:
 - 5” w.c. minimum natural gas pressure or 11” w.c. propane gas pressure upstream of gas valve.
 - 3.5” w.c. minimum natural gas pressure or 10” w.c. propane gas pressure downstream tapping on gas valve — Can be adjusted by regulator on gas valve.
 - If gas pressure is incorrect or gas is not available to boiler, contact gas supplier to correct before proceeding further.

 - If gas is available and you cannot obtain a pilot flame, try purging the gas line and cleaning pilot and pilot gas tubing. Follow ‘Lighting instructions’ again. If you still cannot obtain a flame, replace pilot burner and gas tubing. If this does not allow you to obtain a pilot flame, replace gas valve.

 - If you obtain a pilot flame, but pilot will not remain on, replace thermocouple. If this does not correct problem, replace gas valve and pilot burner.

 - If pilot stays on, but main gas will not come on, proceed to page 28.
11 Troubleshooting continued

Chart 1 — Standing pilot — Boiler will not fire

Before proceeding, follow "Troubleshooting sequence" on page 27. If problem persists, then:

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is damper harness securely plugged in at both ends?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Check for loose wire connections or bad relay on transformer.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Check for open thermostat, LWCO, high limit, spilt switch or rollout thermal fuse element contacts or check for loose wire connections.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DANGER if LWCO, spilt switch or rollout thermal fuse element contacts are open, determine cause and correct condition. Failure to do so will cause severe personal injury, death or substantial property damage.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Check/repair out of round stack section.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Does vent damper rotate open?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>1. Replace actuator.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2. Retest.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Open thermostat contacts for 30 seconds. Vent damper will rotate to closed position. Close thermostat contacts. Vent damper will rotate to open position.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Is 24VAC present across gas valve terminals?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Check continuity of each wire in damper harness. Does continuity exist for each wire? See Table right.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>1. Replace damper wiring harness.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2. Retest.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Remove damper harness from damper harness plug. TEMPORARILY install jumper between terminal 2 and terminal 5 on damper plug in boiler wiring harness. See Table, right. Does boiler fire?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>1. Replace gas valve.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2. Replace damper actuator.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>3. Retest.</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

2 Prepare boiler continued

Vent damper continued

WARNING

LINE UP KEYWAY WHEN CONNECTING PLUGS.

FORCING A MISMATCH CAN CAUSE A HAZARDOUS CONDITION.

DANGER

Do not modify draft hood or vent damper, or make another connection between draft hood and vent damper or boiler except as noted below. This will void CSA certification and will not be covered by Williamson-Thermoflo warranty. Any changes will cause severe personal injury, death or substantial property damage.

1. Install vent damper horizontally or vertically as shown in damper manufacturer’s instructions. Vent damper must be installed so that it serves only one boiler and so damper blade indicator is visible to the user. See Figure 4.
2. Screws or rivets used to secure the vent damper to the draft hood must not interfere with rotation of the damper blade.
3. Install damper harness between damper actuator and hole in jacket left side panel. See Figure 3, page 8.

Use strain relief connectors and locknuts to secure both ends of damper harness.

CAUTION

Keep wiring harness clear of all hot surfaces. Wire insulation could be damaged, causing risk of electrical short-circuit.

4. Read and apply the harness plug warning label (shown upper-left) so that it is visible after installation.
5. Plug damper harness receptacle into damper harness plug. Bypassing (jumpering) vent damper will cause flue products such as carbon monoxide to escape into the house. This will cause severe personal injury or death.

After boiler has operated once, if either end of harness is disconnected, the system safety shutdown will occur. The boiler will not operate until harness is reconnected.

Effikal damper

Johnson Controls damper

Refer to vent manufacturer’s instructions to install plug (shipped with damper) in damper hole.

Damper harness Continuity Table

<table>
<thead>
<tr>
<th>Pin side of connector</th>
<th>Pin Molex Number</th>
<th>Pin Molex Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>N/C</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>N/C</td>
</tr>
</tbody>
</table>

Figure 4 Vent damper assemblies

Table 1 Damper harness Continuity Table

Chart 2 Troubleshooting sequence (continued)

<table>
<thead>
<tr>
<th>Check</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANGER</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Check for loose wire connections or bad relay on transformer.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Check for open thermostat, LWCO, high limit, spilt switch or rollout thermal fuse element contacts or check for loose wire connections.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DANGER if LWCO, spilt switch or rollout thermal fuse element contacts are open, determine cause and correct condition. Failure to do so will cause severe personal injury, death or substantial property damage.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Check/repair out of round stack section. Does vent damper rotate open?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>1. Replace actuator.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2. Retest.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Open thermostat contacts for 30 seconds. Vent damper will rotate to closed position. Close thermostat contacts. Vent damper will rotate to open position.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Is 24VAC present across gas valve terminals?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Check continuity of each wire in damper harness. Does continuity exist for each wire? See Table right.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>1. Replace damper wiring harness.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2. Retest.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Remove damper harness from damper harness plug. TEMPORARILY install jumper between terminal 2 and terminal 5 on damper plug in boiler wiring harness. See Table, right. Does boiler fire?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>1. Replace gas valve.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2. Replace damper actuator.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>3. Retest.</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
2 Prepare boiler continued

Draft hood & spill switch

- **Draft hood installation**
 1. Orient draft hood with spill switch mounting holes to front of boiler as shown in Figure 3.
 2. Secure draft hood to outlet at top of boiler with sheet metal screws.
 3. Bottom of draft hood or skirt must have clearance dimension above jacket top panel as indicated on draft hood.

WARNING

- Do not alter boiler draft hood or place any obstruction or non-approved vent damper in breaching or vent system. CSA certification will become void. Flame gas spillage and carbon monoxide emissions will occur causing severe personal injury or death.

WARNING

- Improper orientation of spill switch may cause boiler to shut down. The loss of heat can result in significant damage due to freezing.

Spill switch installation

1. Fasten spill switch to draft hood as shown in Figure 3.
2. See Wiring diagram to connect wires:
 a. Standing pilot boiler — see page 19.
 b. Spark-ignited pilot boiler — see Control Supplement.

Figure 3 Spill switch with wire harness

Install vent piping

1. Connect from draft hood or vent damper outlet to chimney or vent with same size vent connector.
2. Where possible, vertical venting to the outside from the draft hood or vent damper outlet will offer better performance.
3. Where horizontal vent connector is used, slope upward at least 1/4” per lineal foot toward chimney or vent and support with hangers to prevent sagging.
4. Breaching must not be connected to any portion of a mechanical draft system that can operate under positive pressure.

WARNING

- Long horizontal vent connector, excessive number of elbows or tees, or other obstructions that restrict the flow of combustion gases should be avoided. Severe personal injury, death or substantial property damage could result.

Vent damper

NOTICE

- These systems are used on gas-fired boilers with vent dampers as shipped from factory. Boiler will not operate without vent damper installed.

WARNING

- Only vent dampers listed in the Replacement parts list on page 29 are certified for use with GWA boilers. Any other vent damper installed could cause severe personal injury or death.

Damper blade

Standing pilot ignition systems— See vent manufacturer’s instructions to install plug (shipped with damper) in damper hole. For standing pilot boilers only, install plug with 3/4” diameter hole in vent damper hole.

Spark-ignited pilot systems— See vent manufacturer’s instructions to install plug (shipped with damper) in damper hole. For spark-ignited pilot boilers only, install plug with no hole in vent damper hole.

Minimum clearances

- Provide a minimum of 6” between the vent damper and any combustible material. (See ‘Minimum clearance to combustible materials,’ page 3, for minimum clearance from jacket top to ceiling to maintain this dimension.)

Draft hood & spill switch

- **Spill switch wire harness**
- **Draft hood**
- **Spill switch**
- **Damper harness hole**

12 Replacement parts

Figure 36 Section assembly, flue collector, draft hood and vent damper

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWA002</td>
<td>Replacement section assembly</td>
</tr>
<tr>
<td>GWA007</td>
<td>32111450WT</td>
</tr>
<tr>
<td>GWA050</td>
<td>32111451WT</td>
</tr>
<tr>
<td>GWA070</td>
<td>32111452WT</td>
</tr>
<tr>
<td>GWA100</td>
<td>32111453WT</td>
</tr>
<tr>
<td>GWA140</td>
<td>32111454WT</td>
</tr>
<tr>
<td>GWA140</td>
<td>32111455WT</td>
</tr>
<tr>
<td>GWA175</td>
<td>32111456WT</td>
</tr>
<tr>
<td>GWA210</td>
<td>32111457WT</td>
</tr>
<tr>
<td>GWA210</td>
<td>32111458WT</td>
</tr>
<tr>
<td>GWA245</td>
<td>32111459WT</td>
</tr>
<tr>
<td>GWA245</td>
<td>32111460WT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Radiation plate (1 per joint)</td>
<td>400003700WT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Collector hood</td>
<td></td>
</tr>
<tr>
<td>GWA050</td>
<td>38135462WT</td>
</tr>
<tr>
<td>GWA070</td>
<td>38135463WT</td>
</tr>
<tr>
<td>GWA100</td>
<td>38135464WT</td>
</tr>
<tr>
<td>GWA140</td>
<td>38135465WT</td>
</tr>
<tr>
<td>GWA175</td>
<td>38135466WT</td>
</tr>
<tr>
<td>GWA210</td>
<td>38135467WT</td>
</tr>
<tr>
<td>GWA210</td>
<td>38135468WT</td>
</tr>
<tr>
<td>GWA245</td>
<td>38135469WT</td>
</tr>
<tr>
<td>GWA245</td>
<td>38135470WT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Draft hood</td>
<td></td>
</tr>
<tr>
<td>GWA050</td>
<td>405001270WT</td>
</tr>
<tr>
<td>GWA070</td>
<td>405001271WT</td>
</tr>
<tr>
<td>GWA100</td>
<td>405001272WT</td>
</tr>
<tr>
<td>GWA140</td>
<td>405001273WT</td>
</tr>
<tr>
<td>GWA140</td>
<td>405001274WT</td>
</tr>
<tr>
<td>GWA175</td>
<td>405001275WT</td>
</tr>
<tr>
<td>GWA210</td>
<td>405001276WT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 High limit, 30° differential, with wall</td>
<td>Honeywell L4060D1036 White-Rodgers 11B81-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Spill switch</td>
<td>GWA050</td>
</tr>
<tr>
<td>GWA050</td>
<td>GWA070</td>
</tr>
<tr>
<td>6 Vent damper</td>
<td></td>
</tr>
<tr>
<td>GWA050</td>
<td>Effital RVGP-KS-4BKF</td>
</tr>
<tr>
<td>GWA070</td>
<td>Johnson Controls Q35GD-2</td>
</tr>
<tr>
<td>7 Vent damper</td>
<td></td>
</tr>
<tr>
<td>GWA050</td>
<td>Effital RVGP-KS-7BKF</td>
</tr>
<tr>
<td>GWA070</td>
<td>Johnson Controls Q35GH-2</td>
</tr>
</tbody>
</table>

* Johnson Controls damper assemblies consist of M35BC actuator and Y15 vent pipe

Figure 3 Spill switch with wire harness

Part Number 670-01-1001-00
Perform hydrostatic pressure test
Pressure test boiler before attaching water or gas piping or electrical supply (except as noted below).

Prepare boiler for test
1. Remove the shipping nipple (from GWA supply tapping) and remove the boiler relief valve. Temporarily plug the relief valve tapping with a ¾" NPT pipe plug.
2. Remove 1¼" nipple, reducing tee and drain valve from accessory bag. Install in boiler return connection as shown on Figure 19, item 3, page 32. Install circulator on either the return or supply.
3. Remove 1¼" nipple, 1¼" tee, bushing and pressure/temperature gauge from accessory bag. Pipe to boiler supply connection as shown in Figure 19, item 2, page 32. (Use pipe dope sparingly.)
4. Connect a hose to boiler drain valve, the other end connected to a fresh water supply. Make sure hose can also be used to drain boiler after test.
5. Connect a nipple and shutoff valve to system supply connection (at circulator flange if circulator installed on return). This valve will be used to bleed air during the fill. (Valve and nipple are not included with boiler.)
6. Connect a nipple and shutoff valve to system return connection at circulator flange if circulator installed on return. This valve will be used to bleed air during the fill. (Valve and nipple are not included with boiler.)
7. Temporarily plug the air elimination tapping (next to supply tapping).

Pressure test
1. Open the shutoff valves you installed on supply and return connections.
2. Slowly open boiler drain valve and fresh water supply to fill boiler with water.
3. When water flows from shutoff valves, close boiler drain valve.
5. Slowly reopen boiler drain valve until test pressure of not more than 45 psi is reached on the pressure/temperature gauge.
6. Test at no more than 45 psi for no more than 10 minutes.

Drain and remove fittings
1. Disconnect fill water hose from water source.
2. Drain boiler at drain valve or out hose, whichever provides best access to drain. Remove hose after draining if used to drain boiler.
3. Remove nozzles, valves and plus unless they will remain for use in the system piping.
4. Remove plug from relief valve tapping. See Section 3, page 10, to replace relief valve.

Leaks must be repaired at once. Failure to do so can damage boiler, resulting in substantial property damage.

Do not use petroleum-based cleaning or sealing compounds in boiler system. Severe damage to boiler will occur, resulting in substantial property damage.

Do not leave boiler unattended. A cold water fill could expand and cause excessive pressure, resulting in severe personal injury, death or substantial property damage.

Make sure constant gauge pressure has been maintained throughout test. Check for leaks. Repair if found.
1 Prepare boiler location continued

Air openings continued

Exhaust fans and air movers
The appliance space must never be under a negative pressure. Always provide air openings sized not only to the dimensions required for the firing rate of all appliances, but also to handle the air movement rate of the exhaust fans or air movers using air from the building or space.

Motorized air dampers
If the air openings are fitted with motorized damper, electrically interlock the damper to:
- Prevent the boiler from firing if the damper is not fully open.
- Shut the boiler down should the damper close during boiler operation.
To accomplish this interlock, wire an isolated contact (proving the damper open) in series with the thermostat input to the boiler. The boiler will not start if this contact is open, and will shut down should it open during operation.

2 Prepare boiler

Placement and setup
Place boiler/crate near position
1. Leave boiler in crate and on pallet until installation site is ready.
2. Move entire crate and pallet next to selected location.
4. Remove boiler from pallet as follows:
 a. Lift left side of boiler up and place a board under left legs.
 b. Lift boiler the other way and place a board under right legs.
 c. Slide boiler backwards off pallet and into position.

Inspect orifices and burners
1. Remove front jacket door. Remove base access panel (See Figure 17, item 4, page 30).
2. Check for correctly-sized manifold orifices. See Table 3 for sizing.
3. Level and straighten burners.
 - Burners must be properly seated in slots in burner rest with their openings face up. Main burner orifices must inject down center of burner. Failure to properly seat burners will result in severe personal injury, death or substantial property damage.
4. Reinstall access panel.
 - Do not operate boiler without access panel secured in place. Failure to comply could cause momentary flame rollout on ignition of main flame, resulting in possible fire or personal injury hazard.

Table 3 Manifold orifice sizing

<table>
<thead>
<tr>
<th>Location</th>
<th>Natural gas</th>
<th>Propane gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Sea level - 2.000 ft over 2.000 ft (Note 1)</td>
<td>Sea level - 2.000 ft over 2.000 ft (Note 1)</td>
<td>2.00 mm</td>
</tr>
<tr>
<td>Canada Sea level - 2.000 ft over 2.000 ft</td>
<td>Sea level - 2.000 ft over 2.000 ft</td>
<td>2.00 mm</td>
</tr>
<tr>
<td># 49</td>
<td>1.30 mm</td>
<td></td>
</tr>
<tr>
<td># 56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: For U.S. elevations above 2,000 feet, contact your International Comfort Products supplier for details.

12 Replacement parts continued

Figure 18 Jacket assembly

- Junction box, 4 x 4 (Available at local supply house)
- Junction box, 2 x 4 (Available at local supply house)
- Jacket panel, left side, with insulation
- Jacket panel, right side, with insulation
- Jacket panel, door
- Jacket panel, rear, with insulation

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
<th>International Comfort Products part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Junction box, 4 x 4 (Available at local supply house)</td>
<td>GWA052 & GWA070 GWA105 GWA115 GWA210 GWA245</td>
</tr>
<tr>
<td>1a</td>
<td>Junction box, 2 x 4 (Available at local supply house)</td>
<td>GWA052 & GWA070 GWA105 GWA115 GWA210 GWA245</td>
</tr>
<tr>
<td>2</td>
<td>Jacket panel, left side, with insulation</td>
<td>431223425WT</td>
</tr>
<tr>
<td>3</td>
<td>Jacket panel, right side, with insulation</td>
<td>431223426WT</td>
</tr>
<tr>
<td>4</td>
<td>Jacket panel, door</td>
<td>GWA052 & GWA070 GWA105 GWA115 GWA210 GWA245</td>
</tr>
<tr>
<td>5</td>
<td>Jacket panel, top</td>
<td>431223431WT</td>
</tr>
<tr>
<td>6</td>
<td>Jacket cross tie</td>
<td>GWA052 & GWA070 GWA105 GWA115 GWA210 GWA245</td>
</tr>
<tr>
<td>7</td>
<td>Jacket panel, interior, with insulation</td>
<td>GWA052 & GWA070 GWA105 GWA115 GWA210 GWA245</td>
</tr>
<tr>
<td>8</td>
<td>Jacket panel, rear, with insulation</td>
<td>GWA052 & GWA070 GWA105 GWA115 GWA210 GWA245</td>
</tr>
</tbody>
</table>

The boiler contains ceramic fiber and fiberglass materials. Use care when handling these materials per instructions on page 23 of this manual. Failure to comply could result in severe personal injury.
12 Replacement parts continued

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Manufacturer’s part number</th>
<th>International Comfort Products part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pressure relief valve, ASME, 30 PSI, ½” male inlet</td>
<td>Conbraco Watts</td>
<td>10-407-10 A200</td>
<td>511546920WT</td>
</tr>
<tr>
<td></td>
<td>Pressure relief valve, ASME, 30 PSI, ½” female inlet (Fittings shown are factory-installed on boiler)</td>
<td>Conbraco Watts</td>
<td>10-408-05 335</td>
<td>511546924WT</td>
</tr>
<tr>
<td>2</td>
<td>Combination pressure-temperature gauge, with 2½” short pipe</td>
<td>Amanek ENFM</td>
<td>PSA-1565 4104</td>
<td>510218099WT</td>
</tr>
<tr>
<td>3</td>
<td>Drain valve, ½” (Fittings shown are included with boiler)</td>
<td>Conbraco Hammond Valve Watts</td>
<td>31-606-01 710 205P04 BD-2C</td>
<td>511210423WT</td>
</tr>
<tr>
<td>4</td>
<td>Circulator (Fittings shown are shipped loose with boiler)</td>
<td>Taco</td>
<td>007</td>
<td>511405113WT</td>
</tr>
<tr>
<td>5</td>
<td>Circulator gasket, universal (2 per boiler)</td>
<td>International Comfort Products</td>
<td>590017535WT</td>
<td></td>
</tr>
<tr>
<td>not shown</td>
<td>Circulator hardware kit, includes:</td>
<td>International Comfort Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 flanges, 4 nuts, 4 screws, 2 gasket nipples — 1” NPT — GWA052 through GWA140 1½” NPT — GWA175 through GW245</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Circulator wiring harness</td>
<td>International Comfort Products</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Air contamination

Please review the following information on potential combustion air contamination problems.

See Table 2 for products and areas which may cause contaminated combustion air.

To prevent potential of severe personal injury or death, check for products or areas listed below before installing boiler. If any of these contaminants are found:

- Remove contaminants permanently.
- OR —
 - Isolate boiler and provide outside combustion air. See national, provincial or local codes for further information.

WARNING

Provide adequate combustion and ventilation air to assure proper combustion and reduce the risk of severe personal injury, death or substantial property damage caused by flue gas spillage and carbon monoxide emissions.

Table 2 Corrosive contaminants and likely locations

<table>
<thead>
<tr>
<th>Products to avoid</th>
<th>Areas likely to have contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray cans containing chloro/fluorocarbons</td>
<td>Dry cleaning/laundry areas and establishments</td>
</tr>
<tr>
<td>Permanent wave solutions</td>
<td>Swimming pools</td>
</tr>
<tr>
<td>Chlorinated waxes/cleaners</td>
<td>Metal fabrication plants</td>
</tr>
<tr>
<td>Chlorine-based swimming pool chemicals</td>
<td>Beauty shops</td>
</tr>
<tr>
<td>Calcium chloride used for thawing</td>
<td>Refrigeration repair shops</td>
</tr>
<tr>
<td>Sodium chloride used for water softening</td>
<td>Auto body shops</td>
</tr>
<tr>
<td>Refrigerant leaks</td>
<td>Plastic manufacturing plants</td>
</tr>
<tr>
<td>Paint or varnish removers</td>
<td>Furniture refinishing areas and establishments</td>
</tr>
<tr>
<td>Hydrochloric acid/muriatic acid</td>
<td>New building construction</td>
</tr>
<tr>
<td>Cements and glues</td>
<td>Remodeling areas</td>
</tr>
<tr>
<td>Antistatic fabric softeners used in clothes dryers</td>
<td>Garages with workshops</td>
</tr>
<tr>
<td>Chlorine-type bleaches, detergents, and cleaning solvents found in household laundry rooms</td>
<td></td>
</tr>
<tr>
<td>Adhesives used to fasten building products and other similar products</td>
<td></td>
</tr>
</tbody>
</table>

Air openings

Combustion air and ventilation openings must comply with Section 5.3, "Air for Combustion and Ventilation", of National Fuel Gas Code ANSI Z223.1—latest edition, or applicable local building codes. Canadian installations must comply with B149.1 or B149.2 Installation Codes.

See table below for minimum combustion/ventilation air opening sizes. Where openings are required, provide two (2) openings — one within 12 inches of the ceiling, the other within 12 inches of the floor, as shown in the table illustrations.

Table 3 Minimum air opening sizes

<table>
<thead>
<tr>
<th>Area</th>
<th>No. of openings</th>
<th>Min. opening area</th>
<th>Max. flow rate (in.")</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 (min.)</td>
</tr>
</tbody>
</table>

WARNING

A small building or a building with an area of less than 10,000 ft² requires at least one 1200 ft² of ventilation area.

Note:
- If building is of light construction and air is taken from inside, as in A, provide two openings in building outside wall, one within 10 inches of ceiling, the other within 12 inches of floor. Each opening must have a minimum area of 1 square inch per 1,000 ft² of all appliances in the building.
1 Prepare boiler location continued

Vent system

WARNING
Failure to follow all instructions can result in flue gas spillage and carbon monoxide emissions, causing severe personal injury or death.

Inspect existing chimney before installing boiler. Failure to clean or replace perforated pipe or tile lining will cause severe personal injury or death.

Do not alter boiler draft hood or place any obstruction or non-certified vent damper in breeching or vent system. CSA certification will become void. Flue gas spillage and carbon monoxide emissions will occur causing severe personal injury or death.

The following requirements apply when you remove an existing boiler from a vent system shared with other appliances. If the new boiler will not use the common vent, you must test (as described below) each remaining appliance — operating by itself — to verify that the vent system operates adequately.

When removing boiler from existing common vent system:

At the time of removal of an existing boiler, the following steps shall be followed with each appliance remaining connected to the common venting system placed in operation, while the other appliances remaining connected to the common venting system are not in operation.

a. Seal any unused openings in the common venting system.

b. Visually inspect the venting system for proper size and horizontal pitch and determine there is no blockage or restriction, leakage, corrosion or other deficiencies which could cause an unsafe condition.

c. Test vent system — Inspect all building doors and windows. Turn on any exhaust fans, such as range hoods and bathroom exhausts, so they will operate at maximum speed. Do not operate a summer exhaust fan. Close fireplace dampers.

 d. Place in operation the appliance being inspected. Follow the directions of the manufacturers for proper operation. Adjust thermostat so appliance will operate continuously.

 e. Test for spillage at draft hood relief opening after 5 minutes of main burner operation. Use the flame of a match or candle.

 f. After it has been determined that each appliance remaining connected to the common venting system properly vents when tested as outlined above, return doors, windows, exhaust fans, fireplace dampers, and any other gas-burning appliance to their previous conditions of use.

Any improper operation of common venting system should be corrected so the installation conforms with the National Fuel Gas Code, ANSI Z223.1—latest edition. Correct by resizing to approach correct so the installation conforms with the National Fuel Gas Code, ANSI Z223.1—latest edition. Correct by resizing to approach

Chimney or vent requirements:

1. Venting must be installed according to Part 7. "Venting of Equipment", of National Fuel Gas Code, ANSI Z223.1—latest edition and applicable building codes. Canadian installations must comply with B149.1 or B149.2 Installation Codes.

2. See "Ratings" on page 35 for minimum chimney or vent sizes. Chimney or vent termination:
 - A chimney, or any vent other than a Type B vent with listed vent cap, must extend at least 3 feet above the highest point where it passes through a roof of a building, and at least 2 feet higher than any portion of a building within a horizontal distance of 10 feet.
 - Type B vents with listed caps may terminate as in Figure 2 if no closer than 8 feet from a vertical wall or similar obstruction.
 - Otherwise, Type B vents must terminate at least 2 feet above the roof penetration and at least 2 feet higher than any portion of a building within 10 feet.

3. A lined chimney is preferred and must be used when required by local, state, provincial and national codes, laws, regulations and ordinances. Vitreous tile linings with joints that prevent retention of moisture and linings made of noncorrosive materials are best. Advice for flue connections and chimney linings can be obtained from local gas utility. Type B double-wall metal vent pipe or single-wall vent pipe may be used as a liner.

4. Cold masonry chimneys, also known as outside chimneys, typically have one or more walls exposed to outside air. When any atmospheric gas-fired boiler with automatic vent damper is vented through this type of chimney, the potential exists for condensation to occur. Condensation can damage a masonry chimney. Williamson-Thermoflo recommends the following to prevent possible damage:
 - Line chimney with corrosion-resistant metal liner such as AL29-4C single-wall stainless steel or B-vent. Size liner per National Fuel Gas Code ANSI Z223.1—latest edition.
 - Provide drain trap to remove any condensate.

5. Where two or more gas appliances vent into a common chimney or vent, equivalent area should be at least equal to area of vent outlet on largest appliance plus 50 percent of vent outlet area of additional appliance.

Figure 2 Terminations with Type B vent fitted with listed vent cap, provided vent is at least 8 feet from any vertical wall or similar obstruction

- **Pitch**
 - 1/4" to 1/2" per foot
 - 1/2" to 1/4" per foot
- **H (feet)**
 - 1.0
 - 1.25
 - 1.5
 - 2.0
 - 2.5
 - 3.0
 - 4.0
- **Roof penetration**
 - Listed vent cap
 - Lowest discharge opening
- **See minimum H (feet) right**

12 Replacement parts continued

Figure 20 Gas control assembly

<table>
<thead>
<tr>
<th>Item number</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Manufacturer's part number</th>
<th>International Comfort Products part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gas valve, 1/2" x 1/2", GWA052 through GWA175 V820042105 Honeywell V820042105</td>
<td>51044360WT</td>
<td>51044360WT</td>
<td>51044360WT</td>
</tr>
<tr>
<td>2</td>
<td>Gas valve, 1/2" x 1/2", GWA210 and GWA245</td>
<td>Honeywell</td>
<td>V820042105</td>
<td>51044360WT</td>
</tr>
<tr>
<td>3</td>
<td>Pilot assembly kit with orifice</td>
<td>International Comfort Products</td>
<td>51081005WT</td>
<td>51081005WT</td>
</tr>
<tr>
<td>4</td>
<td>Tubing, pilot, aluminum</td>
<td>560742860WT</td>
<td>560742860WT</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Tubing, thermocouple</td>
<td>531724540WT</td>
<td>531724540WT</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Transformer relay</td>
<td>5303521679WT</td>
<td>5303521679WT</td>
<td></td>
</tr>
<tr>
<td>not shown</td>
<td>Wiring harness</td>
<td>593918620WT</td>
<td>593918620WT</td>
<td></td>
</tr>
</tbody>
</table>
Clearances

Service clearances

1. Provide minimum clearances for cleaning and servicing the boiler and for access to controls and components as listed in the table below.
2. Provide at least screwdriver clearance to jacket front panel screws for removal of front panel for inspection and minor service. If unable to provide at least screwdriver clearance, install unions and shutoff valves in system so boiler can be moved for servicing.

Minimum clearance to combustible materials

1. Hot water pipes must be at least ½" from combustible material.
2. Single-wall vent pipe must be at least 6 inches from combustible material.
3. Type B double-wall metal vent pipe — See vent manufacturer’s recommendation for clearances to combustible material.

Clearances from combustible materials:

<table>
<thead>
<tr>
<th>Minimum</th>
<th>Front (provides means of access)</th>
<th>Back</th>
<th>Left side (provides means of access)</th>
<th>Right side</th>
<th>Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>3"</td>
<td>7"</td>
<td>6"</td>
<td>2"</td>
<td></td>
</tr>
</tbody>
</table>

Minimum foundation size

<table>
<thead>
<tr>
<th>Model</th>
<th>Minimum foundation size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWA052</td>
<td>25" x 12"</td>
</tr>
<tr>
<td>GWA070</td>
<td>25" x 12"</td>
</tr>
<tr>
<td>GWA105</td>
<td>25" x 15"</td>
</tr>
<tr>
<td>GWA140</td>
<td>25" x 18"</td>
</tr>
<tr>
<td>GWA175</td>
<td>25" x 21"</td>
</tr>
<tr>
<td>GWA210</td>
<td>25" x 24"</td>
</tr>
<tr>
<td>GWA245</td>
<td>25" x 27"</td>
</tr>
</tbody>
</table>

Flooring and foundation

Flooring

The GWA boiler is approved for installation on combustible flooring, but must never be installed on carpeting. Do not install boiler on carpeting even if foundation is used. Fire can result, causing severe personal injury, death or substantial property damage.

Foundation

1. Provide a solid brick or minimum 2-inch thick concrete foundation pad if any of the following is true:
 - floor can become flooded.
 - the boiler mounting area is not level.
2. See Table 1 for minimum foundation dimensions.
1 Prepare boiler location

Codes & checklist

Installations must follow these codes:

- Local, state, provincial, and national codes, laws, regulations and ordinances.
- Standard for Controls and Safety Devices for Automatically Fired Boilers, ANSI/ASME CGA-1, when required.
- National Electrical Code.
- For Canada only: B149.1 or B149.2 Installation Code, CSA C22.1 Canadian Electrical Code Part 1 and any local codes.

Certification

Notice

Before locating the boiler:

- Check for nearby connection to:
 - System water piping
 - Venting connections
 - Gas supply piping
 - Electrical power

- Check area around boiler. Remove any combustible materials, gasoline and other flammable liquids.

Failure to keep boiler area clear and free of combustible materials, gasoline and other flammable liquids and vapors can result in severe personal injury, death or substantial property damage.

- Boiler must be installed so that gas control system components are protected from dripping or spraying water or rain during operation or service.

- If new boiler will replace existing boiler, check for and correct system problems, such as:
 - System leaks causing oxygen corrosion or section cracks from hard water deposits.
 - Incorrectly-sized expansion tank.
 - Lack of antifreeze in boiler water causing system and boiler to freeze and leak.

- Gas control system components are protected from dripping or spraying water or rain during operation or service.

- If new boiler will replace existing boiler, check for and correct system problems, such as:
 - System leaks causing oxygen corrosion or section cracks from hard water deposits.
 - Incorrectly-sized expansion tank.
 - Lack of antifreeze in boiler water causing system and boiler to freeze and leak.

2. Incorrectly-sized expansion tank.

GWA boilers are ASME rated for 50 psig working pressure.
Boiler Manual

Gas-Fired Water Boilers

Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Prepare boiler location</td>
<td>2</td>
</tr>
<tr>
<td>2 Prepare boiler</td>
<td>6</td>
</tr>
<tr>
<td>3 Install water piping</td>
<td>10</td>
</tr>
<tr>
<td>4 Install gas piping</td>
<td>13</td>
</tr>
<tr>
<td>5 Field wiring</td>
<td>14</td>
</tr>
<tr>
<td>6 Start-up</td>
<td>15</td>
</tr>
<tr>
<td>7 Checkout procedure</td>
<td>18</td>
</tr>
<tr>
<td>8 Sequence of operation — standing pilot boilers</td>
<td>19</td>
</tr>
<tr>
<td>9 Lighting instructions — GWA standing pilot boilers</td>
<td>20</td>
</tr>
<tr>
<td>10 Service and maintenance</td>
<td>22</td>
</tr>
<tr>
<td>11 Troubleshooting</td>
<td>27</td>
</tr>
<tr>
<td>12 Replacement parts</td>
<td>29</td>
</tr>
<tr>
<td>13 Dimensions</td>
<td>34</td>
</tr>
<tr>
<td>14 Ratings</td>
<td>35</td>
</tr>
</tbody>
</table>

Hazard definitions

- **DANGER** Hazards that will cause severe personal injury, death or substantial property damage.
- **WARNING** Hazards that can cause severe personal injury, death or substantial property damage.
- **CAUTION** Hazards that will or can cause minor personal injury or property damage.
- **NOTICE** Special instructions on installation, operation or maintenance that are important but not related to personal injury or property damage.

INSTALLER — Read all instructions before installing. Read page 2 first. Follow all instructions in proper order to prevent personal injury or death.
- Consider piping and installation when determining boiler location.
- Any claims for damage or shortage in shipment must be filed immediately against the transportation company by the consignee.

USER — Please read the following. Failure to comply could result in severe personal injury, death or substantial property damage.
- This manual is for use only by your qualified heating installer/service technician.
- Please see the User’s Information Manual for your reference.
- Have the boiler serviced by a qualified service technician, at least annually.

WARNING This manual must only be used by a qualified heating installer/service technician. Failure to comply could result in severe personal injury, death or substantial property damage.

NOTICE When calling or writing about the boiler — Please have: boiler model number from the boiler rating label and CP number from the boiler jacket. You may list the CP number in the space provided on the “Installation and service certificate” found on page 18.