These instructions must be read and understood completely before attempting installation

Safety Labeling and Signal Words

DANGER, WARNING, CAUTION, and NOTE

The signal words **DANGER, WARNING, CAUTION, and NOTE** are used to identify levels of hazard seriousness. The signal word **DANGER** is only used on product labels to signify an immediate hazard. The signal words **WARNING, CAUTION, and NOTE** will be used on product labels and throughout this manual and other manual that may apply to the product.

DANGER – Immediate hazards which will result in severe personal injury or death.

WARNING – Hazards or unsafe practices which could result in severe personal injury or death.

CAUTION – Hazards or unsafe practices which may result in minor personal injury or property damage.

NOTE – Used to highlight suggestions which will result in enhanced installation, reliability, or operation.

Signal Words in Manuals

The signal word **WARNING** is used throughout this manual in the following manner:

⚠️ **WARNING**

The signal word **CAUTION** is used throughout this manual in the following manner:

⚠️ **CAUTION**

Signal Words on Product Labeling

Signal words are used in combination with colors and/or pictures or product labels.

TABLE OF CONTENTS

SAFETY CONSIDERATIONS 2
MODEL NOMENCLATURE 3
INSTALLATION GUIDELINE 4
Step 1 – Plan for Unit Location 9
Step 2 – Complete Pre–Installation Checks 9
Step 3 – Prepare Unit Mounting Support 9
Step 4 – Rig and Mount Unit 10
Step 5 – Complete Refrigerant Piping 10
PRE–START–UP 20
START–UP 20
OPERATING SEQUENCE 28
ROUTINE SYSTEM MAINTENANCE 29
SERVICE 29
TROUBLESHOOTING 40
APPENDIX A, R–410A Quick Reference Guide . 42
APPENDIX B, Low Ambient Option 43
START–UP CHECKLIST 49
CHECK VOLTAGE BALANCE 50

⚠️ **WARNING**

PERSONAL INJURY, AND/OR PROPERTY DAMAGE HAZARD

Failure to carefully read and follow this warning could result in equipment malfunction, property damage, personal injury and/or death.

Installation or repairs made by unqualified persons could result in equipment malfunction, property damage, personal injury and/or death.

The information contained in this manual is intended for use by a qualified service technician familiar with safety procedures and equipped with proper tools and test instruments.

Installation must conform with local building codes and with the national Electrical Code NFPA70 current edition or Canadian Electrical Code part 1 CSA C.22.1.
SAFETY CONSIDERATIONS

Improper installation, adjustment, alteration, service, maintenance, or use can cause explosion, fire, electrical shock, or other conditions which may cause death, personal injury, or property damage. Consult a qualified installer, service agency, or your distributor or branch for information or assistance. The qualified installer or agency must use factory-authorized kits or accessories when modifying this product. Refer to the individual instructions packaged with the kits or accessories when installing.

Follow all safety codes. Wear safety glasses, protective clothing, and work gloves. Use quenching cloth for brazing operations. Have fire extinguisher available. Read these instructions thoroughly and follow all warnings or cautions included in literature and attached to the unit. Consult local building codes, the current editions of the National Electrical Code (NEC) NFPA 70.

In Canada refer to the current editions of the Canadian Electrical Code CSA C22.1 Recognize safety information.

This is the safety−alert symbol △ When you see this symbol on the unit and in instructions or manuals, be alert to the potential for personal injury. Understand these signal words; DANGER, WARNING, and CAUTION. These words are used with the safety−alert symbol. DANGER identifies the most serious hazards which will result in severe personal injury or death. WARNING signifies hazards which could result in personal injury or death. CAUTION is used to identify unsafe practices which may result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which will result in enhanced installation, reliability, or operation.

WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Before performing service or maintenance operations on unit, always turn off main power switch to unit and install lockout tag. Unit may have more than one power switch.

WARNING

UNIT OPERATION AND SAFETY HAZARD

Failure to follow this warning could cause personal injury, death and/or equipment damage.

R−410A systems operate at higher pressures than R−22 systems. When working with R−410A systems, use only service equipment and replacement components specifically rated or approved for R−410A service.

WARNING

PERSONAL INJURY AND ENVIRONMENTAL HAZARD

Failure to follow this warning could cause personal injury or death.

Relieve pressure and recover all refrigerant before system repair or final unit disposal.

Wear safety glasses and gloves when handling refrigerants.

Keep torches and other ignition sources away from refrigerants and oils.

CAUTION

CUT HAZARD

Failure to follow this caution may result in personal injury.

Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts and servicing units.

CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may cause equipment damage. Ensure voltage listed on unit data plate agrees with electrical supply provided for the unit.
MODEL NOMENCLATURE

<table>
<thead>
<tr>
<th>Position Number</th>
<th>C</th>
<th>A</th>
<th>S</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Series</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C = R-410A Condensing Unit</td>
<td></td>
</tr>
<tr>
<td>A = Air Conditioning (Cooling Only)</td>
<td></td>
</tr>
<tr>
<td>H = Heat Pump</td>
<td></td>
</tr>
<tr>
<td>S = Standard ASHRAE 90.1-2010 Efficiency</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
</tr>
<tr>
<td>Nominal Cooling Capacity</td>
<td></td>
</tr>
<tr>
<td>H = 208/230-3-60</td>
<td></td>
</tr>
<tr>
<td>L = 460-3-60</td>
<td></td>
</tr>
<tr>
<td>S = 575-3-50</td>
<td></td>
</tr>
<tr>
<td>VOLTAGE</td>
<td></td>
</tr>
<tr>
<td>A = Single Circuit</td>
<td></td>
</tr>
<tr>
<td>B = Single Circuit w/ Low Ambient Control</td>
<td></td>
</tr>
<tr>
<td>D = Dual Circuit</td>
<td></td>
</tr>
<tr>
<td>E = Dual Circuit w/ Low Ambient Control</td>
<td></td>
</tr>
<tr>
<td>Refrigerant System Options</td>
<td></td>
</tr>
<tr>
<td>A = Copper / Aluminum Standard</td>
<td></td>
</tr>
<tr>
<td>C = E-Coat Copper / Aluminum</td>
<td></td>
</tr>
<tr>
<td>Outdoor Coil Options</td>
<td></td>
</tr>
<tr>
<td>0 = None</td>
<td></td>
</tr>
<tr>
<td>1 = UnPowered C.O.</td>
<td></td>
</tr>
<tr>
<td>Service Options</td>
<td></td>
</tr>
<tr>
<td>A = None</td>
<td></td>
</tr>
<tr>
<td>C = Non-Fused Disconnect</td>
<td></td>
</tr>
<tr>
<td>Electrical Options</td>
<td></td>
</tr>
<tr>
<td>0 = Elec-Mechanical Standard</td>
<td></td>
</tr>
<tr>
<td>0 = Future Use</td>
<td></td>
</tr>
<tr>
<td>Base Unit Controls</td>
<td></td>
</tr>
<tr>
<td>Future Use</td>
<td></td>
</tr>
</tbody>
</table>
Installation Guideline

Replacement / Retrofit – R22 to R–410A

Replacement/retrofit installations require change–out of outdoor unit, metering device, and filter driers. Change–out of indoor coil (evaporator) and interconnecting tubing is recommended.

Existing evaporator coil – If the existing evaporator coil may be re–used, check with the coil manufacturer to verify the coil construction is suitable for operation with the higher pressures of R–410A. Also determine if the existing TXV valve is compatible with R–410A, replace if necessary. The minimum factory test pressure rating must be 250 psig (1725 kPa). Existing coil will need to be purged with Nitrogen to remove as much mineral oil as possible to eliminate cross contamination of oil.

Acid test – If the existing system is being replaced because of a compressor electrical failure, assume acid is in system. If system is being replaced for any other reason, use an approved acid test kit to determine acid level. If even low levels of acid are detected, install a 100 percent activated alumina suction–line filter drier in addition to the replacement liquid–line filter drier. Remove the suction line filter drier as soon as possible, with a maximum of 72 hours of operation. Recommendation: Install a ball valve in the liquid line at the filter drier location when installing a suction filter in the suction line.

Installation

1. Remove the existing evaporator coil or fan coil and install the replacement coil when appropriate.

2. Drain oil from low points and traps in suction line tubing and hot gas bypass tubing if appropriate) and evaporator if they were not replaced. Removing oil from evaporator coil may require purging of the tubing with dry nitrogen.

3. Unless indoor unit is equipped with a R–410A approved metering device, change the metering device to a thermal expansion valve (TXV) designed for R–410A.

4. Remove the existing outdoor unit. Install the new outdoor unit according to these installation instructions.

5. Install a new field–supplied liquid–line filter drier at the indoor coil just upstream of the TXV or fix orifice metering device.

6. If a suction line filter drier is also to be installed, install suction line drier downstream of suction line service valve at condensing unit.

7. If required, install a 100% activated alumina suction line filter drier at the outdoor unit.

8. Evacuate and charge the system according to the instructions in this installation manual.

9. Operate the system for 10 hours. Monitor the pressure drop across the suction line filter drier. If pressure drop exceeds 3 psig (21kPa), replace suction–line and liquid–line filter driers. Be sure to purge system with dry nitrogen and evacuate when replacing filter driers. Continue to monitor the pressure drop across suction–line filter drier. Repeat filter changes is necessary. Never leave suction–line filter drier in system longer than 72 hr (actual time).

NOTE: Do not use a torch to remove filter driers, use tubing cutters. Excess heat from the torch will drive the moisture contained within the drier back out into the system.
Figure 1 Unit Dimensions – 15 Ton

LEFT SIDE VIEW

FRONT VIEW

TOP VIEW

Table: Unit Dimensions

<table>
<thead>
<tr>
<th>UNIT</th>
<th>Standard Weight</th>
<th>Corner A</th>
<th>Corner B</th>
<th>Corner C</th>
<th>Corner D</th>
<th>Center of Gravity</th>
<th>Unit Height</th>
</tr>
</thead>
</table>

LEGEND: RTPF = Round Tube/Plate Fin coil
Figure 2
Unit Dimensions – 20 Ton

LEGEND: RTPF = Round Tube/Plate Fin coil

<table>
<thead>
<tr>
<th>UNIT</th>
<th>Standard Weight</th>
<th>Corner A</th>
<th>Corner B</th>
<th>Corner C</th>
<th>Corner D</th>
<th>Center of Gravity</th>
<th>Unit Height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs. kg.</td>
<td>lbs. kg.</td>
<td>lbs. kg.</td>
<td>lbs. kg.</td>
<td>lbs. kg.</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>CAS241</td>
<td>978 444</td>
<td>360 163</td>
<td>188 85</td>
<td>147 67</td>
<td>283 128</td>
<td>38</td>
<td>23</td>
</tr>
<tr>
<td>(RTPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[965.2]</td>
<td>[584.2]</td>
</tr>
<tr>
<td>CAS240</td>
<td>978 444</td>
<td>360 163</td>
<td>188 85</td>
<td>147 67</td>
<td>283 128</td>
<td>38</td>
<td>23</td>
</tr>
<tr>
<td>(RTPF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[965.2]</td>
<td>[584.2]</td>
</tr>
<tr>
<td>Table 1</td>
<td>Physical Data — 60 Hz English</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIT CASE</td>
<td>181</td>
<td>180</td>
<td>241</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMINAL CAPACITY (tons)</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATING WEIGHTS (lb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Round Tube/Plate Fin Coil (Cu/Al)</td>
<td>731</td>
<td>731</td>
<td>900</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFRIGERANT TYPE‡</td>
<td>R-410A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Charge, Typical (lb)†</td>
<td>24.6</td>
<td>12.0 / 12.0</td>
<td>38.0</td>
<td>19.0 / 19.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping Charge (lb)</td>
<td>12.2</td>
<td>6.0 / 6.0</td>
<td>28.0</td>
<td>14.0 / 14.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPRESSOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qty...Type</td>
<td>2...Scroll</td>
<td>2...Scroll</td>
<td>2...Scroll</td>
<td>2...Scroll</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil Charge (oz)</td>
<td>60</td>
<td>60 / 60</td>
<td>110</td>
<td>110 / 110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONDENSER FANS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qty...Rpm</td>
<td>3...1100</td>
<td>3...1100</td>
<td>4...1100</td>
<td>4...1100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Hp</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal Airflow (Cfm Total)</td>
<td>9,000</td>
<td>9,000</td>
<td>12,000</td>
<td>12,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watts (Total)</td>
<td>970</td>
<td>970</td>
<td>1150</td>
<td>1150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTPF CONDENSER COIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material (Tube/Fin)</td>
<td>Cu / Al</td>
<td>Cu / Al</td>
<td>Cu / Al</td>
<td>Cu / Al</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rows/Fins per inch (FPI)</td>
<td>2 / 17</td>
<td>2 / 17</td>
<td>2 / 17</td>
<td>2 / 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Face Area (sq ft total)</td>
<td>47.0</td>
<td>47</td>
<td>50.0</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressurestat Settings (psig)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Cutout</td>
<td>630 ± 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cut-in</td>
<td>505 ± 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Cutout</td>
<td>54 ± 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cut-in</td>
<td>117 ± 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIPING CONNECTIONS (in. ODS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qty...Suction</td>
<td>1...13/8</td>
<td>2...13/8</td>
<td>1...15/8</td>
<td>2...13/8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qty...Liquid</td>
<td>1...5/8</td>
<td>2...1/2</td>
<td>1...5/8</td>
<td>2...1/2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEGEND
- RTPF — Round Tube/Plate Fin Coil
- ODS — Outside Diameter Sweat (socket)
- * Unit is factory-supplied with partial charge only.
- † Typical operating charge with 25 ft of interconnecting piping.
- ‡ Storage capacity of condenser coil with coil 80% full of liquid R-410A at 95°F.
<table>
<thead>
<tr>
<th>Table 2</th>
<th>Physical Data — 60 Hz SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT CAS</td>
<td>181</td>
</tr>
<tr>
<td>NOMINAL CAPACITY (kW)</td>
<td>52.7</td>
</tr>
<tr>
<td>OPERATING WEIGHT (kg)</td>
<td></td>
</tr>
<tr>
<td>Round Tube/Plate Fin Coil (Cu/Al)</td>
<td>332</td>
</tr>
<tr>
<td>REFRIGERANT TYPE‡</td>
<td></td>
</tr>
<tr>
<td>Operating Charge, Typical (kg)†</td>
<td>11.1</td>
</tr>
<tr>
<td>Shipping Charge (kg)</td>
<td>5.4</td>
</tr>
<tr>
<td>COMPRESSOR</td>
<td>Scroll</td>
</tr>
<tr>
<td>Qty...Type</td>
<td>2...Scroll</td>
</tr>
<tr>
<td>Oil Charge (L)</td>
<td>1.7</td>
</tr>
<tr>
<td>CONDENSER FANS</td>
<td></td>
</tr>
<tr>
<td>Qty...r/s</td>
<td>3...18</td>
</tr>
<tr>
<td>Motor Hp NEMA</td>
<td>1/4</td>
</tr>
<tr>
<td>Diameter (mm)</td>
<td>560</td>
</tr>
<tr>
<td>Nominal Airflow (L/s)</td>
<td>4248</td>
</tr>
<tr>
<td>Watts (Total)</td>
<td>970</td>
</tr>
<tr>
<td>RTPF CONDENSER COIL (Qty)</td>
<td></td>
</tr>
<tr>
<td>Material (Tube/Fin)</td>
<td>Cu / Al</td>
</tr>
<tr>
<td>Coil Type</td>
<td>3/8−in RTPF</td>
</tr>
<tr>
<td>Rows/Fins per Meter (Fins/m)</td>
<td>1...670</td>
</tr>
<tr>
<td>Face Area (sq m total)</td>
<td>4.4</td>
</tr>
<tr>
<td>CONTROLS</td>
<td></td>
</tr>
<tr>
<td>Pressurestat Settings (kPa)</td>
<td></td>
</tr>
<tr>
<td>High Cutout</td>
<td></td>
</tr>
<tr>
<td>Cut-in</td>
<td>3482 ±138</td>
</tr>
<tr>
<td>Low Cutout</td>
<td>372 ± 21</td>
</tr>
<tr>
<td>Cut-in</td>
<td>807 ± 34</td>
</tr>
<tr>
<td>PIPING CONNECTIONS (mm ODS)</td>
<td></td>
</tr>
<tr>
<td>Qty...Suction</td>
<td>1...34.9</td>
</tr>
<tr>
<td>Qty...Liquid</td>
<td>1...13.3</td>
</tr>
</tbody>
</table>

LEGEND

RTPF — Round Tube/Plate Fin
NEMA — National Electrical Manufacturers Association
ODS — Outside Diameter Sweat (socket)
‡ Unit is factory-supplied with partial charge only.
† Typical operating charge with 7.62 m of interconnecting piping.
Matching CAS Model To Evaporator Coil

The Model CAS181/241 is a single-circuit unit design, requiring one set of refrigeration piping. This model can be connected to an evaporator coil with one circuit or with two circuits (by manifolding the evaporator connections into a single piping system).

The Model CAS180/240 is a dual-circuit unit design that requires two sets of refrigeration piping between the outdoor unit and the evaporator coil (or coils). This model can only be connected to an evaporator coil that has two refrigeration circuits (or to two separate evaporator coils). The Model CAS180/240 CANNOT be connected to a single-circuit evaporator coil. The Model CAS180/240 CANNOT be field-converted to a single-circuit design.

Table 3 – Evaporator Coil Connections

<table>
<thead>
<tr>
<th>Evaporator Coil</th>
<th>Connect to Model</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Circuit</td>
<td>CAS181/241 ONLY</td>
<td></td>
</tr>
<tr>
<td>Two Circuits</td>
<td>MANIFOLD evaporator circuits into single piping system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAS180/240</td>
<td>Use two separate piping systems</td>
</tr>
</tbody>
</table>

Before unpacking this new CAS model, compare the evaporator coil design to the CAS model.

Jobsite Survey

Complete the following checks before installation.

1. Consult local building codes and the NEC (National Electrical Code) ANSI/NFPA 70 for special installation requirements.
2. Determine unit location (from project plans) or select unit location.
3. Check for possible overhead obstructions which may interfere with unit lifting or rigging.

Step 1 — Plan for Unit Location

Select a location for the unit and its support system (pad, rails or other) that provides for the minimum clearances required for safety. This includes the clearance to combustible surfaces, unit performance and service access below, around and above unit as specified in unit drawings. See Figure 3. NOTE: Consider also the effect of adjacent units on airflow performance and control box safety clearance.

Do not install the outdoor unit in an area where fresh air supply to the outdoor coil may be restricted or when recirculation from the condenser fan discharge is possible. Do not locate the unit in a well or next to high walls.

Evaluate the path and required line length for interconnecting refrigeration piping, including suction riser requirements (outdoor unit above indoor unit), liquid line lift (outdoor unit below indoor unit) and hot gas bypass line. Relocate sections to minimize the length of interconnecting tubing.

Figure 3 Service Clearance Dimensional Drawing

Step 2 — Complete Pre-Installation Checks

CHECK UNIT ELECTRICAL CHARACTERISTIC — Confirm before installation of unit that voltage, amperage and circuit protection requirements listed on unit data plate agree with power supply provided.

UNCRATE UNIT — Remove unit packaging except for the top skid assembly, which should be left in place until after the unit is rigged into its final location.

INSPECT SHIPMENT — File a claim with shipping company if the shipment is damaged or incomplete.

CONSIDER SYSTEM REQUIREMENTS

- Consult local building codes and National Electrical Code (NEC, U.S.A.) for special installation requirements.
- Allow sufficient space for airflow clearance, wiring, refrigerant piping, and servicing unit. See Figure 1 and 2 for unit dimensions and weight distribution data.
- Locate the unit so that the outdoor coil (condenser) airflow is unrestricted on all sides and above.
- The unit may be mounted on a level pad directly on the base channels or mounted on raised pads at support points. See Tables 1 and 2 for unit operating weights. See Figure 1 and 2 for weight distribution based on recommended support points.

NOTE: If vibration isolators are required for a particular installation, use the data in Figure 1 and 2 to make the proper selection.

Step 3 — Prepare Unit Mounting Support

Slab Mount

Provide a level concrete slab that extends a minimum of 6 in. (150 mm) beyond unit cabinet. Install a gravel apron in front
of condenser coil air inlet to prevent grass and foliage from obstructing airflow.

Step 4 – Rig and Mount the Unit

⚠️ CAUTION

UNIT OPERATION HAZARD
Failure to follow this caution may result in equipment damage.
All panels must be in place when rigging. Unit is not designed for handling by fork truck.

RIGGING — These units are designed for overhead rigging. Refer to the rigging label for preferred rigging method.
Spreader bars are not required if top crating is left on the unit. All panels must be in place when rigging. As further protection for coil faces, plywood sheets may be placed against the sides of the unit, behind cables. Run cables to a central suspension point so that the angle from the horizontal is not less than 45 degrees. Raise and set the unit down carefully.
If it is necessary to roll the unit into position, mount the unit on longitudinal rails, using a minimum of 3 rollers. Apply force to the rails, not the unit. If the unit is to be skidded into position, place it on a large pad and drag it by the pad. Do not apply any force to the unit.
Raise from above to lift the unit from the rails or pad when unit is in its final position.
After the unit is in position, remove all shipping materials and top crating.

Step 5 — Complete Refrigerant Piping Connections

⚠️ CAUTION

UNIT OPERATION HAZARD
Failure to follow this caution may result in improper operation.
Do not bury refrigerant piping underground.

⚠️ CAUTION

UNIT OPERATION HAZARD
Failure to follow this caution may result in improper operation.
A refrigerant receiver is not provided with the unit. Do not install a receiver.

PROVIDE SAFETY RELIEF — If local codes dictate an additional safety relief device, purchase locally and install locally. Installation will require the recovery of the factory shipping charge before the factory tubing can be cut and the supplemental relief device is installed.
Model CAS180/240 has two separate refrigeration systems. If required, each circuit will require a field-supplied/installed supplemental relief device.

Table 4 – Equivalent Lengths for Common Fittings (ft)

<table>
<thead>
<tr>
<th>Nominal Tube OD</th>
<th>Elbows</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90° Std</td>
</tr>
<tr>
<td>3/8</td>
<td>1.3</td>
</tr>
<tr>
<td>1/2</td>
<td>1.4</td>
</tr>
<tr>
<td>5/8</td>
<td>1.6</td>
</tr>
<tr>
<td>3/4</td>
<td>1.8</td>
</tr>
<tr>
<td>7/8</td>
<td>2</td>
</tr>
<tr>
<td>1 1/8</td>
<td>2.6</td>
</tr>
<tr>
<td>13/8</td>
<td>3.3</td>
</tr>
<tr>
<td>1 5/8</td>
<td>4</td>
</tr>
<tr>
<td>2 1/8</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 4 – Equivalent Lengths for Common Fittings (ft)

<table>
<thead>
<tr>
<th>Nominal Tube OD</th>
<th>Branch Flow</th>
<th>Tees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Reduct</td>
<td>Reduce 25%</td>
</tr>
<tr>
<td>3/8</td>
<td>2.6</td>
<td>0.8</td>
</tr>
<tr>
<td>1/2</td>
<td>2.7</td>
<td>0.9</td>
</tr>
<tr>
<td>5/8</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3/4</td>
<td>3.5</td>
<td>1.2</td>
</tr>
<tr>
<td>7/8</td>
<td>4</td>
<td>1.4</td>
</tr>
<tr>
<td>1 1/8</td>
<td>5</td>
<td>1.7</td>
</tr>
<tr>
<td>13/8</td>
<td>7</td>
<td>2.3</td>
</tr>
<tr>
<td>1 5/8</td>
<td>8</td>
<td>2.6</td>
</tr>
<tr>
<td>2 1/8</td>
<td>10</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Check CAS Model with Evaporator Coil Connections —

Confirm before installation of unit that the evaporator coil connections are consistent with this CAS model. See Table 3.

SIZE REFRIGERANT LINES — Select the recommended line sizes for CAS181/241 and CAS180/240 unit from the appropriate tables.

Determine the linear length of interconnecting piping required between the outdoor unit and indoor unit (evaporator). Consider and identify also the arrangement of the tubing path (quantity and type of elbows in both lines), liquid line solenoid size, filter drier and any other refrigeration specialties located in the liquid line. Refer to the indoor unit installation instructions for additional details on refrigeration specialties devices.

Determine equivalent line length adjustments for path and components and add to linear line lengths. See Table 4, Equivalent Lengths for Common Fittings, for usual fitting types. Also identify adjustments for refrigeration specialties.

NOTE: Equivalent line lengths will vary based on tube diameter. Calculate equivalent line length for each pipe by adding equivalent length adjustments to linear lengths for each pipe.

Enter the appropriate table to select the recommended line sizes.
Liquid Lift —

A liquid lift condition exists when the outdoor unit is located below the indoor (evaporator) unit and liquid flows vertically up in a portion of the liquid line. The vertical column of liquid reduces the available state point subcooling at the evaporator coil’s thermal expansion valve. This effect reduces the length of liquid lift (feet of elevation) that a liquid line size can accommodate. Longer linear tube lengths will also reduce the amount of liquid lift possible. Check Tables 5 (CAS181/241) and 6 (CAS180/240) for maximum liquid lift capabilities for line sizes. Reselect the liquid line tube size if necessary. If maximum available tube size cannot provide the required lift distance on this installation, relocate the outdoor unit to reduce the equivalent line length or the lift requirement.

Suction Riser —

A suction riser condition exists when the outdoor unit is located above the indoor (evaporator) unit and suction vapor must flow vertically up to return to the compressor. Oil return is a concern when the suction tube size is too large to produce the minimum refrigerant velocity to ensure oil return at minimum load conditions. Check Table 7 for maximum suction tube size for CAS units at minimum load conditions. Consider suction speed riser (reduced tube size for vertical segment only) or double suction riser arrangement if the recommended suction tube size does not provide necessary minimum flowrates for this riser.

<table>
<thead>
<tr>
<th>Model: Line Sizes Table</th>
<th>Quantity of Line Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS181/241</td>
<td>5</td>
</tr>
<tr>
<td>CAS180/240</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 5 – CAS181/241 Piping Recommendations (Single-Circuit Unit)

<table>
<thead>
<tr>
<th>R-410A</th>
<th>Equivalent Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ft</td>
</tr>
<tr>
<td></td>
<td>m</td>
</tr>
<tr>
<td>Model</td>
<td>Typ Linear ft</td>
</tr>
<tr>
<td></td>
<td>Max Lift</td>
</tr>
<tr>
<td></td>
<td>Charge (lbs)</td>
</tr>
<tr>
<td>CAS241</td>
<td>Liquid Line</td>
</tr>
<tr>
<td></td>
<td>Max Lift</td>
</tr>
<tr>
<td></td>
<td>Charge (lbs)</td>
</tr>
</tbody>
</table>

Legend:

- **Length Equivalent:** Equivalent tubing length, including effects of refrigeration specialties devices
- **Typ Linear:** Typical linear tubing length, Feet (50% added to linear to define Equivalent Length for this table)
- **Liquid Line:** Tubing size, inches OD.
- **Max Lift:** Maximum liquid lift (indoor unit ABOVE outdoor unit only), at maximum permitted liquid line pressure drop —
 - Linear Length Less than 100 ft: Minimum 2.0°F subcooling entering TXV
 - Linear Length Greater than 100 ft: Minimum 0.5°F subcooling entering TXV
- **Suction Line:** Tube size, inches OD
- **Charge:** Charge Quantity, lbs. Calculated for both liquid line sizes (where applicable), but only with larger suction line size (where applicable)

NOTE: For applications with equivalent length greater than 188 ft (57 m) and/or linear length greater than 125 ft (38 m), contact your local distributor.
Table 6 – CAS180/240 Piping Recommendations (Two-Circuit Unit)

<table>
<thead>
<tr>
<th>NOTE: CAS180/240 requires TWO sets of refrigeration piping</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-410A</td>
</tr>
<tr>
<td>Ft</td>
</tr>
<tr>
<td>m</td>
</tr>
<tr>
<td>Model</td>
</tr>
<tr>
<td>CAS180</td>
</tr>
<tr>
<td>Max Lift</td>
</tr>
<tr>
<td>Charge ea. (lbs)</td>
</tr>
<tr>
<td>CAS240</td>
</tr>
<tr>
<td>Max Lift</td>
</tr>
<tr>
<td>Charge (lbs) A</td>
</tr>
<tr>
<td>B</td>
</tr>
</tbody>
</table>

Legend:
- **Length Equiv**: Equivalent tubing length, including effects of refrigeration specialties devices
- **Typ Linear**: Typical linear tubing length, Feet (50% added to linear to define Equivalent Length for this table)
- **Liquid Line**: Tubing size, inches OD.
- **Max Lift**: Maximum liquid lift (indoor unit ABOVE outdoor unit only), at maximum permitted liquid line pressure drop —
 - Linear Length Less than 100 ft: Minimum 2.0°F subcooling entering TXV
 - Linear Length Greater than 100 ft: Minimum 0.5°F subcooling entering TXV
- **Suction Line**: Tube size, inches OD
- **Charge**: Charge Quantity, lbs. Calculated for both liquid line sizes (where applicable), but only with larger suction line size (where applicable)

NOTE:
- For applications with equivalent length greater than 188 ft (57 m) and/or linear length greater than 125 ft (38 m), contact your local distributor.

Table 7 – CAS Maximum Suction Pipe Size

<table>
<thead>
<tr>
<th>Model:</th>
<th>Maximum Tube Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS181/241</td>
<td>15/8</td>
</tr>
<tr>
<td>CAS180/240</td>
<td>15/8</td>
</tr>
</tbody>
</table>

Insulate Suction Lines —
Apply closed-cell tubular insulation to all suction lines between evaporator coil connection and CAS unit’s suction service valve.

Hot Gas Bypass —
Hot gas bypass, if used, should be introduced before the evaporator. (A bypass route that also bypasses the evaporator circuit may lead to oil trapping in the evaporator circuit during low load conditions and then to oil slugging as evaporator load increases.) Model CAS units do not include a hot gas stub connection; a tee must be field-supplied and installed in the compressor discharge line. Run a 1/2-in OD line between outdoor unit and evaporator coil inlet. Install an Auxiliary Side Connector at the evaporator between TXV and distributor (follow instructions for the side connector part). Insulate the hot gas line.

CAS180/240: Generally only one hot gas bypass system will be applied on a two-circuit unit. Connect the hot gas bypass system to Circuit 1 (first-on/last-off, connected to the evaporator coil’s bottom circuit).

CAS180/240 Piping Connections —
The CAS180/240’s two circuits are designated Circuit 1 and Circuit 2. Circuit 1 is controlled by the thermostat’s Y1 (or TC1) contact and will be the first circuit on and last circuit off. Circuit 2 is controlled by the thermostat’s Y2 (or TC2) contact and this circuit is always the “lag” circuit.

See Fig. 4 for location of Circuit 1 and Circuit 2 service valves and field piping connections. Circuit 1 is on the left-hand side of the service valve compartment; Circuit 2 is on the right.

When a single piece evaporator coil with two separate circuits is connected to a CAS180/240, the lower coil circuit should be connected to the CAS180/240’s Circuit 1 so that the evaporator’s lower coil segment is first-on/last-off (to avoid re-evaporation of condensate on dry lower coil segments).
Plan the Circuit 1 and Circuit 2 tubing segments carefully, mark each segment and check constantly as piping systems are assembled to avoid piping errors.

CAS180/240 unit cannot be field-piped as a single-circuit/tandem system.

Connecting FAS to CAS180/240: The FAS fan coil in sizes 15, 20 and 25 ton is a face-split coil design that also has its circuits designated as 1 and 2. See Fig.5. Note that the lower coil segment changes as the arrangement of the FAS changes. In a vertical arrangement, the FAS’s lower coil segment is segment 2; this segment should be connected to the CAS180/240’s Circuit 1. In a horizontal arrangement, the FAS’s lower segment is now segment 1; this segment should be connected to the CAS180/240’s Circuit 1.

CAS units include one (CAS181/241) or two (CAS180/240) R-410A-duty filter drier(s), shipped in cartons attached to the unit basepan. Remove the filter drier(s) and prepare to install in the liquid line(s) at the evaporator coil. Do not remove connection fitting plugs until ready to connect and braze the filter drier into the liquid line position.

Table 8 – R-410A-duty Filter Drier(s)

<table>
<thead>
<tr>
<th>Model-Size</th>
<th>Qty</th>
<th>Liquid Line OD</th>
<th>Desiccant Volume</th>
<th>Part Number Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS181</td>
<td>1</td>
<td>5/8-in</td>
<td>30 cu. in.</td>
<td>1179552</td>
</tr>
<tr>
<td>CAS241</td>
<td>1</td>
<td>5/8-in</td>
<td>30 cu. in.</td>
<td>1179552</td>
</tr>
<tr>
<td>CAS180</td>
<td>2</td>
<td>1/2-in</td>
<td>16 cu. in.</td>
<td>1179538</td>
</tr>
<tr>
<td>CAS240</td>
<td>2</td>
<td>1/2-in</td>
<td>16 cu. in.</td>
<td>1179538</td>
</tr>
</tbody>
</table>

Installation of liquid line moisture indicating sightglass in each circuit is recommended. Locate the sightglass(es) between the outlet of the filter drier and the TXV inlet. Refer to Table 9 for recommendations on refrigeration specialties.

Table 9 – Refrigerant Specialties Part Numbers.

<table>
<thead>
<tr>
<th>LIQUID LINE SIZE (IN.)</th>
<th>LIQUID LINE SOLENOID VALVE (LLSV)</th>
<th>LLSV COIL</th>
<th>SIGHT GLASS</th>
<th>FILTER DRIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>1179872</td>
<td>1179874</td>
<td>1179877</td>
<td>provided with unit see Table 8</td>
</tr>
<tr>
<td>5/8</td>
<td>1179873</td>
<td>1179874</td>
<td>1179878</td>
<td></td>
</tr>
</tbody>
</table>

CAS180/240 units require TWO sets of parts.
In some applications, depending on space and convenience requirements, it may be desirable to install 2 filter driers and sight glasses in a single circuit application. One filter drier and sight glass may be installed at A locations (see Fig. 6) or 2 filter driers and sight glasses may be installed at B locations (see Figs. 6 and 7).

Select the filter drier for maximum unit capacity and minimum pressure drop. Complete the refrigerant piping from the indoor unit to the outdoor unit before opening the liquid and suction lines at the outdoor unit.

Install Liquid Line Solenoid Valve —

It is recommended that a solenoid valve be placed in the main liquid line (see Figs. 6 & 7) between the condensing unit and the evaporator coil. Locate the solenoid valve at the outlet end of the liquid line, near the evaporator coil connections, with flow direction arrow pointed at the evaporator coil. Refer to Table 9. (A liquid line solenoid valve is required when the liquid line length exceeds 75 ft [23 m].) This valve prevents refrigerant migration (which causes oil dilution) to the compressor during the off cycle, at low outdoor ambient temperatures. Wire the solenoid in parallel with the compressor contactor coil (see Figs. 6 & 7). This means of electrical control is referred to as solenoid drop control.

Capacity Control Liquid Line Solenoid Valve: Evaporator capacity control via liquid solenoid valve is not recommended for use with CAS models.

Make Piping Connections —

Piping connections at the CAS unit are ball valves with stub tube extensions. Do not open the unit service valves until all interconnecting tube brazing has been completed. The stub tube connections include 1/4-in SAE service fittings with Schrader valve cores (see Fig. 10). Before making any brazed connections to the unit service valves, remove both Schrader valve caps and cores and save for re-installation. Connect a source for nitrogen to one of these service fittings during tube brazing to prevent the formation of copper oxides inside the tubes at brazed joints.

When connecting the field tubing to the CAS service valves, wrap the valves in wet rags to prevent overheating. Pressure-test all joints from outdoor unit connections over to the evaporator coil, using nitrogen as pressure and with soap-and-bubbles.

When pressure-testing is completed, remove the nitrogen source at the outdoor unit service valves and re-install the two Schrader valve cores. Torque the cores to 2-3 in-lbs (23-34 N-cm).
Evacuation/Dehydration —
Evacuate and dehydrate the connected refrigeration system(s) (excluding the CAS unit) to 500 microns using a two-stage vacuum pump attached to the service ports outside the CAS service valves, following description in GTAC II, Module 4, System Dehydration.

UNIT OPERATION AND SAFETY HAZARD
Failure to follow this warning could cause personal injury, death and/or equipment damage.
R-410A refrigerant systems operate at higher pressure than standard R-22 systems. Do not use R-22 service equipment or components on R-410A refrigerant equipment.

This unit is designed for use with R-410A refrigerant. Do not use any other refrigerant in this system.
R-410A refrigerant is provided in pink (rose) colored cylinders. These cylinders are available with and without dip tubes; cylinders with dip tubes will have a label indicating this feature. For a cylinder with a dip tube, place the cylinder in the upright position (access valve at the top) when removing liquid refrigerant for charging. For a cylinder without a dip tube, invert the cylinder (access valve on the bottom) when removing liquid refrigerant.

Because R-410A refrigerant is a blend, it is strongly recommended that refrigerant always be removed from the cylinder as a liquid. Admit liquid refrigerant into the system in the discharge line. If adding refrigerant into the suction line, use a commercial metering/expansion device at the gauge manifold; remove liquid from the cylinder, pass it through the metering device at the gauge set and then pass it into the suction line as a vapor. Do not remove R-410A refrigerant from the cylinder as a vapor.

Preliminary Charge —
Before starting the unit, charge R-410A liquid refrigerant into the high side of each CAS circuit through the liquid service valve(s). The amount of refrigerant added must be at least 80% of the operating charge listed in Tables 5 or 6 for LINEAR line length LESS the factory charge quantity (if factory shipping charge has not been removed). See example below.

Allow high and low side pressures to equalize. If pressures do not equalize readily, charge R-410A vapor (using special service manifold with expansion device) into the suction line service port for the low side of system to assure charge in the evaporator. Refer to GTAC II, Module 5, Charging, Recover, Recycling, and Reclamation for liquid charging procedures.

Example:
CAS240
60-ft (18.3 m) linear line length
Equivalent line length 90-ft (27.4 m)
Liquid Lift: 20-ft (6.1 m)
Select line sizes from Table 6 (CAS180/240):
- Liquid 1/2 in
- Suction 1-1/8 in.
Charge
- Circuit 1: 23.0 lbs (at 75-ft linear length)
- Circuit 2: 22.0 lbs
80% of Operating Charge:
- Circuit 1: 0.80 x 23.0 = 18.4 lbs
- Circuit 2: 0.80 x 22.0 = 17.6 lbs
Factory Shipping Charge: 15 lbs
Field-Charge
- Circuit 1: 18.4 − 15 = 3.4 lbs
- Circuit 2: 17.6 − 15 = 2.6 lbs
For linear line lengths longer than 125 ft (38 m), contact your local distributor for system charge value.

Step 1 — Install Accessories
Accessories requiring modifications to unit wiring should be completed now. These accessories may include Winter Start controls and Low Ambient controls. Refer to the instructions shipped with the accessory.

Step 2 — Complete Electrical Connections

NOTE: Check all factory and field electrical connections for tightness. Field-supplied wiring shall conform with the limitations of 63°F (33°C) rise.

Field Power Supply —
If equipped with optional Powered Convenience Outlet: The power source leads to the convenience outlet's transformer primary are not factory connected. Installer must connect these leads according to required operation of the convenience outlet. If an always-energized convenience outlet operation is desired, connect the source leads to the line side of the unit-mounted disconnect. (Check with local codes to ensure this method is acceptable in your area.) If a de-energize via unit
disconnect switch operation of the convenience outlet is desired, connect the source leads to the load side of the unit disconnect. On a unit without a unit-mounted disconnect, connect the source leads to compressor contactor C and indoor fan contactor IFC pressure lugs with unit field power leads.

Field power wires are connected to the unit at line-side pressure lugs on compressor contactor C and TB1 (see wiring diagram label for control box component arrangement) or at factory-installed option non-fused disconnect switch. Max wire size is #4 AWG (copper only).

NOTE: TEST LEADS - Unit may be equipped with short leads (pigtails) on the field line connection points on contactor C or optional disconnect switch. These leads are for factory run-test purposes only; remove and discard before connecting field power wires to unit connection points. Make field power connections directly to line connection pressure lugs only.

![WARNING](image)

FIRE HAZARD

Failure to follow this warning could cause in personal injury, death and/or equipment damage.

Do not connect aluminum wire between disconnect switch and condensing unit. Use only copper wire. (See Fig. 9.)

Units Without Factory-Installed Disconnect —

When installing units, provide a disconnect switch per NEC (National Electrical Code) of adequate size. Disconnect sizing data is provided on the unit informative plate. Locate on unit cabinet or within sight of the unit per national or local codes. Do not cover unit informative plate if mounting the disconnect on the unit cabinet.

Units with Factory-Installed Disconnect —

The factory-installed option disconnect switch is located in a weatherproof enclosure located under the main control box. The manual switch handle is accessible through an opening in the access panel.

All Units —

All field wiring must comply with NEC and all local codes. Size wire based on MCA (Minimum Circuit Amps) on the unit informative plate. See Fig. 10 for power wiring connections to the unit contactor and terminal block and equipment ground.

Provide a ground-fault and short-circuit over-current protection device (fuse or breaker) per NEC Article 440 (or local codes). Refer to unit informative data plate for MOCP (Maximum Over-current Protection) device size.

All units except 208/230-v units are factory wired for the voltage shown on the nameplate. If the 208/230-v unit is to be connected to a 208-v power supply, the control transformer must be rewired by moving the black wire with the 1/4-in. female spade connector from the 230-v connection and moving it to the 208-v 1/4-in. male terminal on the primary side of the transformer. Refer to unit label diagram for line-side information.

Figure 10 Power Wiring Connections

Units Without Disconnect Option

Units With Disconnect Option

Affix the crankcase heater warning sticker to the unit disconnect switch.

Convenience Outlets —

![WARNING](image)

ELECTRICAL OPERATION HAZARD

Failure to follow this warning could result in personal injury or death.

Units with convenience outlet circuits may use multiple disconnects. Check convenience outlet for power status before opening unit for service. Locate its disconnect switch, if appropriate, and open it. Tag-out this switch, if necessary.

A non-powered convenience outlets is offered on CAS models and provide a 125-volt GFCI (ground-fault circuit-interrupter) duplex receptacle rated at 15-A behind a hinged waterproof access cover, located on the end panel of the unit. See Fig. 11.

Non-powered type: This type requires the field installation of a general-purpose 125-volt 15-A circuit powered from a
source elsewhere in the building. Observe national and local codes when selecting wire size, fuse or breaker requirements and disconnect switch size and location. Route 125-v power supply conductors into the bottom of the utility box containing the duplex receptacle.

![Figure 11 Convenience Outlet Location](image)

WARNING

ELECTRICAL OPERATION HAZARD

Failure to follow this warning could result in personal injury or death.

Using unit-mounted convenience outlets: Units with unit-mounted convenience outlet circuits will often require that two disconnects be opened to de-energize all power to the unit. Treat all units as electrically energized until the convenience outlet power is also checked and de-energization is confirmed. Observe National Electrical Code Article 210, Branch Circuits, for use of convenience outlets.

Installing Weatherproof Cover: A weatherproof while in use cover for the factory installed convenience outlets is now required by UL standards. This cover cannot be factory mounted due its depth; it must be installed at unit installation. For shipment, the convenience outlet is covered with a blank cover plate. The weatherproof cover kit is shipped in the unit’s control box. The kit includes the hinged cover, a backing plate and gasket.

DISCONNECT ALL POWER TO UNIT AND CONVENIENCE OUTLET.

Remove the blank cover plate at the convenience outlet; discard the blank cover.

Loosen the two screws at the GFCI duplex outlet, until approximately \(\frac{1}{2}\) in (13 mm) under screw heads are exposed. Press the gasket over the screw heads. Slip the backing plate over the screw heads at the keyhole slots and align with the gasket; tighten the two screws until snug (do not overtighten).

Mount the weatherproof cover to the backing plate as shown in Fig. 12. Remove two slot fillers in the bottom of the cover to permit service tool cords to exit the cover. Check for full closing and latching.

![Figure 12 Weatherproof Cover Installation](image)

All Units —

Voltage to compressor terminals during operation must be within voltage range indicated on unit nameplate. See Table 10. On 3-phase units, voltages between phases must be balanced within 2% and the current within 10%. Use the formula shown in the legend for Tables 10 and 11, Note 5 to determine the percent of voltage imbalance. Operation on improper line voltage or excessive phase imbalance constitutes abuse and may cause damage to electrical components. Such operation would invalidate any applicable warranty.

Field Control Wiring —

CAS unit control voltage is 24v. See Fig. 13 (CAS181/241) and Fig. 14 (CAS180/240) for typical field control connections and the unit’s label diagram for field-supplied wiring details. Route control wires to the CAS unit through the opening in unit’s end panel to the connections terminal board in the unit’s control box.

Remainder of the system controls connection will vary according to the specific construction details of the indoor section (air handler or packaged fan coil). Fig. 13 (CAS181/241) and Fig. 14 (CAS180/240) depict typical connections to a FAS fan coil unit. Plan for field connections carefully and install control wiring correctly per the project plan. Additional components and supplemental transformer accessory may be required.

The CAS unit requires an external temperature control device. This device can be a thermostat (field-supplied) or a thermostat emulation device provided as part of a third-party Building Management System.

Thermostat —

Install an approved accessory thermostat according to installation instructions included with the accessory. Locate the thermostat accessory on a solid wall in the conditioned space to sense average temperature in accordance with the thermostat installation instructions.
The CAS181/241 is a single-circuit, two-stage cooling unit. Select a two-stage cooling thermostat, with or without supplemental heating as needed.

The CAS180/240 is a dual-circuit, two-stage cooling unit. Select a two-stage cooling thermostat, with or without supplemental heating as needed.

Select a thermostat cable or equivalent single leads of different colors with minimum of five leads for CAS181/241 or six leads for CAS180/240 unit. Check the thermostat installation instructions for additional features which might require additional conductors in the cable.

For wire runs up to 50 ft. (15 m), use no. 18 AWG (American Wire Gage) insulated wire (35°C minimum). For 50 to 75 ft. (15 to 23 m), use no. 16 AWG insulated wire (35°C minimum). For over 75 ft. (23 m), use no. 14 AWG insulated wire (35°C minimum). All wire sizes larger than no. 18 AWG cannot be directly connected to the thermostat and will require a junction box and splice at the thermostat.

Control Circuit Wiring —
Control voltage is 24 v. See Figs. 13 and 14 and the unit’s label diagram for field-supplied wiring details. Route control wires through the opening in unit’s end panel to the connection in the unit’s control box.

Control Transformer Wiring —
On multi voltage units, check the transformer primary wiring connections. See Fig. 15 or refer to the unit’s label diagram.

If the unit will be operating at 208-3-60 power, remove the black wire (BLK) from the transformer primary connection labelled “230” and move it to the connection labelled “208”. See Fig. 15.
Table 10 – Unit Wire/Fuse or HACR Breaker Sizing Data

<table>
<thead>
<tr>
<th>UNIT SIZE</th>
<th>NOMINAL POWER SUPPLY</th>
<th>VOLTAGE RANGE</th>
<th>COMPRESSOR</th>
<th>NO C.O. or UNPWRD C.O.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS</td>
<td></td>
<td></td>
<td>No. 1</td>
<td>No. 2</td>
</tr>
<tr>
<td>181 180</td>
<td>208/230–3–60</td>
<td>187–230</td>
<td>250.0</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>301.0</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>301.0</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>301.0</td>
<td>225</td>
</tr>
<tr>
<td>241 240</td>
<td>208/230–3–60</td>
<td>187–230</td>
<td>250.0</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>301.0</td>
<td>225</td>
</tr>
</tbody>
</table>

Legend and Notes for Table 10

LEGEND:
- BRKR = Circuit breaker
- CO = Convenient outlet
- FLA = Full Load Amps
- LRA = Locked Rotor Amps
- MCA = Minimum Circuit Amps
- NEC = National Electrical Code
- RLA = Rated Load Amps
- UNPWR CO = Unpowered convenient outlet

NOTES:
1. In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. Canadian units may be fuse or circuit breaker.
2. The MCA values are calculated in accordance with The NEC. Article 440.
4. The 575–v units are UL, Canada–listed only.
5. Unbalanced 3-Phase Supply Voltage
 Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percentage of voltage imbalance.

Example: Supply voltage is 230-3-60

\[
\frac{\text{max voltage deviation from average voltage}}{\text{average voltage}} = 100 \times \frac{\text{max voltage deviation from average voltage}}{\text{average voltage}}
\]

\[
\text{Average Voltage} = \frac{(224 + 231 + 226)}{3} = \frac{681}{3} = 227
\]

Determine maximum deviation from average voltage.
\[
\text{AB} = 224 \quad \text{BC} = 231 \quad \text{AC} = 226
\]

Determine percent of voltage imbalance.
\[
\text{\% Voltage Imbalance} = 100 \times \frac{4}{227} = 1.76\%
\]

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.
PRE-START-UP

IMPORTANT: Before beginning Pre-Start-Up or Start-Up, review Start-Up Checklist at the back of this book. The Checklist assures proper start-up of a unit and provides a record of unit condition, application requirements, system information, and operation at initial start-up.

UNIT DAMAGE HAZARD
Failure to follow these cautions may result in equipment damage.

UNIT DAMAGE HAZARD
Failure to follow this caution may result in equipment damage.
Do not attempt to start the condensing unit, even momentarily, until the following steps have been completed. Compressor damage may result.

System Check
1. The electrical power source must agree with the unit's nameplate rating.
2. Check all air handler(s) and other equipment auxiliary components. Consult the manufacturer's instructions regarding any other equipment connected to the condensing unit. If the unit has field-installed accessories, be sure all are properly installed and correctly wired. If used, the airflow switch must be properly installed.
3. Check tightness of all electrical connections.
4. Be sure liquid line and low side of the system are properly leak checked and dehydrated.
5. Be sure the unit is properly charged. See "Preliminary Charge", below.
6. Open the liquid line and suction line service valves.
7. The crankcase heater must be firmly attached to the compressor crankcase. Be sure the crankcase is warm (heater must be on for 24 hours before starting compressor).

Turn On Crankcase Heater —

Turn on the crankcase heater for 24 hours before starting the unit to be sure all the refrigerant is out of the oil. To energize the crankcase heater, proceed as follows:
1. Set the space thermostat set point above the space temperature so there is no demand for cooling.
2. Close the field disconnect.

Preliminary Charge —

Before starting the unit, charge liquid refrigerant into the high side of the system through the liquid service valve. The amount of refrigerant added must be at least 80% of the operating charge listed in the Physical Data table (Tables 1 through 2). Allow high and low side pressures to equalize before starting compressor. If pressures do not equalize readily, charge vapor on low side of system to assure charge in the evaporator. Refer to GTAC II, Module 5, Charging, Recover, Recycling, and Reclamation for liquid charging procedures.

CAUTION

UNIT DAMAGE HAZARD
Failure to follow this caution may result in equipment damage.
Prior to starting compressor, a preliminary charge of refrigerant must be added to avoid possible compressor damage.

START-UP

CAS Units: The compressor crankcase heater must be on for 24 hours before start-up. After the heater has been on for 24 hours, the unit can be started. If no time elapsed since the preliminary charge step was completed, it is unnecessary to wait the 24-hour period.

Preliminary Checks
1. Check that electric power supply agrees with unit nameplate data.
2. Verify that the compressor crankcase heater is securely in place.
3. Check that the compressor crankcase heater has been on at least 24 hours.
4. Re-check for leaks using the procedure outlined in the Pre-Start-Up section, Leak Test and Dehydration. If any leaks are detected, repair as required. Evacuate and dehydrate as described in the Leak Test and Dehydration section.
5. Ensure that the preliminary charge has been added as described in the Pre-Start-Up section, Preliminary Charge.
6. All internal wiring connections must be tight, and all barriers and covers must be in place.

NOTE: The CAS units are factory charged with the required amount of oil. If recharging is required, use Emkarate RL 32-3MAF for the CAS units.

Compressor Rotation —

On 3-phase units with scroll compressors, it is important to be certain that the compressor is rotating in the proper direction. CAS units are equipped with a Comfort Alert Diagnostic Module (CADM). Alert Code 7 indicates reverse power phasing.

To correct phase order:
1. Turn off power to the unit, tag disconnect.
2. Reverse any two of the unit power leads.
3. Reapply power to the compressor, verify correct pressures.

To verify the compressor is rotating in the proper direction:
1. Connect service gages to the suction and liquid pressure fittings.
2. Energize the compressor.
3. The suction pressure should drop and the liquid pressure should rise, as is normal on any start-up.
Compressor Overload —
This overload interrupts power to the compressor when either the current or internal motor winding temperature becomes excessive, and automatically resets when the internal temperature drops to a safe level. This overload may require up to 60 minutes (or longer) to reset. If the internal overload is suspected of being open, disconnect the electrical power to the unit and check the circuit through the overload with an ohmmeter or continuity tester.

Advanced Scroll Temperature Protection (ASTP) —
A label located above the terminal box identifies Copeland Scroll compressor models that contain this technology. See Fig. 16. Advanced Scroll Temperature Protection (ASTP) is a form of internal discharge temperature protection, that unloads the scroll compressor when the internal temperature reaches approximately 149°C (300°F). At this temperature, an internal bi-metal disk valve opens and causes the scroll elements to separate, which stops compression. Suction and discharge pressures balance while the motor continues to run. The longer the compressor runs unloaded, the longer it must cool before the bi-metal disk resets. See Fig. 17.

Start Unit
Set the space thermostat to a set point above space temperature so that there is no demand for cooling. Close the CAS disconnect switch. Only the crankcase heater will be energized.
Reset the space thermostat below ambient so that a call for cooling is ensured.

UNIT DAMAGE HAZARD
Failure to follow this caution may result in equipment damage.
Never charge liquid into the low-pressure side of system. Do not overcharge. During charging or removal of refrigerant, be sure indoor-fan system is operating. Ensure both outdoor fan motors are running; bypass any Motormaster function.

Adjust Refrigerant Charge —
The unit must be charged in Cooling mode only. Refer to Cooling Charging Charts, Fig. 19 through Fig. 22. For applications with line lengths greater than 125 ft, contact your distributor. Vary refrigerant until the conditions of the chart are met. Note that the charging charts are different from the type normally used. The charts are based on charging the units to the correct subcooling for the various operating conditions. Accurate pressure gage and temperature sensing device are required. Connect the pressure gage to the service port on the liquid line service valve. Mount the temperature sensing device on the liquid line close to the liquid line service valve, and insulate it so that outdoor ambient temperature does not affect the reading. Indoor airflow must be within the unit’s normal operating range. Operate the unit for a minimum of 15 minutes. Ensure that pressure and temperature readings have stabilized. Plot the liquid pressure and temperature on chart and add or reduce the charge to meet the curve. Adjust the charge to conform with the charging chart, using the liquid pressure and temperature to read the chart.

CAS241 Check Compressor Oil Level —
After adjusting the refrigerant charge, allow the unit to run fully loaded for 20 minutes. Stop the compressors and check the oil level. Oil level should be 1/3 to 1/2 up on the sight glass (see Fig. 18).
IMPORTANT: Oil level should only be checked when the compressors are off.

Add oil only if necessary to bring the oil into view in the sight glass. If oil is added, run the circuit for an additional 10 minutes, then stop and check oil level. If the level remains low, check the piping system for proper design for oil return; also, check the system for leaks. If checking the oil level with unit running in part load, let unit run one hour, then run at full load for 10 minutes. If oil does not return to acceptable sight glass levels, check for correct suction piping and line sizing.

Final Checks —
Ensure that all safety controls are operating, control panel covers are on, and the service panels are in place.
Figure 19 CAS181 Charging Chart – Single Circuit

15 TON CHARGING CHART R–410A ALL CONDENSER FANS OPERATING
15 TONNE TABLEAU DE CHARGE R–410A
TOUTES LES SOUFFLERIES DE CONDENSATION EN FONCTIONNEMENT

Figure 20 CAS241 Charging Chart – Single Circuit

20 TON CHARGING CHART R–410A ALL CONDENSER FANS OPERATING
15 TONNE TABLEAU DE CHARGE R–410A
TOUTES LES SOUFFLERIES DE CONDENSATION EN FONCTIONNEMENT
15 TON CHARGING CHART R-410A ALL CONDENSER FANS OPERATING
15 TONNE TABLEAU DE CHARGE R-410A
TOUTES LES SOUFFLERIES DE CONDENSATION EN FONCTIONNEMENT
(CIRCUIT 1)

PRESSURE AT LIQUID VALVE (PSIG)
PRESSION À LA VANNE DE LIQUIDE (PSIG)

15 TON CHARGING CHART R-410A ALL CONDENSER FANS OPERATING
15 TONNE TABLEAU DE CHARGE R-410A
TOUTES LES SOUFFLERIES DE CONDENSATION EN FONCTIONNEMENT
(CIRCUIT 2)

PRESSURE AT LIQUID VALVE (PSIG)
PRESSION À LA VANNE DE LIQUIDE (PSIG)
Figure 22 | CAS240 Charging Chart – Dual Circuit

20 TON CHARGING CHART R-410A ALL CONDENSER FANS OPERATING

20 TONNE TABLEAU DE CHARGE R-410A
TOUTES LES SOUFFLERIES DE CONDENSATION EN FONCTIONNEMENT

(CIRCUIT 1)

PRESSURE AT LIQUID VALVE (PSIG)
PRESSION À LA VANNE DE LIQUIDE (PSIG)

20 TON CHARGING CHART R-410A ALL CONDENSER FANS OPERATING

20 TONNE TABLEAU DE CHARGE R-410A
TOUTES LES SOUFFLERIES DE CONDENSATION EN FONCTIONNEMENT

(CIRCUIT 2)

PRESSURE AT LIQUID VALVE (PSIG)
PRESSION À LA VANNE DE LIQUIDE (PSIG)
Figure 24 Typical CAS180/240 Wiring Diagram (15 Ton 230v Dual Unit Shown)
OPERATING SEQUENCE

Base Unit Controls

Indoor (Supply) Fan —

The indoor fan contactor (IFC) is remotely located at the fan coil or fan section. If the thermostat fan operation is selected as Continuous, the IFC is energized and the indoor (supply) fan motor runs continuously. If the thermostat fan operation is selected as Automatic, the IFC will be energized on a call for Cooling; indoor (supply) fan motor runs. When thermostat call for Cooling is satisfied, the IFC is de-energized and indoor (supply) fan motor stops.

Cooling, Unit Without Economizer —

CAS181/241 (Single Circuit)

On a thermostat call for Cooling, IFC will be energized and indoor (supply) fan motor runs. Thermostat output Y1 is energized; terminal Y1 at CAS181/241 unit receives 24-v. 24-v received at CADM1 terminal Y. If anti-recycle time delay period has not expired, CADM1 relay will remain open, de-energizing Solenoid Valve Relay (SVR) and preventing compressor start. When safety pressure switches are closed and CADM1 time delay expires, CADM1 relay closes, SVR and compressor contactor C1 are energized; liquid line solenoid valve LLSV opens, all outdoor fan motors start and Compressor 1 starts.

On a thermostat calling for Stage 2 Cooling, thermostat output Y2 is energized; terminal Y2 at CAS181/241 unit receives 24-v. 24-v received at CADM2 terminal Y. If anti-recycle time delay period has not expired, CADM2 relay will remain open, preventing Compressor 2 start. When safety pressure switches are closed and CADM2 time delay expires, CADM2 relay closes, compressor contactor C2 is energized; Compressor 2 starts.

As space cooling load is satisfied, thermostat outputs Y2 and Y1 are de-energized, removing 24-v at CAS180/240 terminals Y2 and Y1. Circuit 2 compressor stops on Y2 opening; SVR2 is de-energized and LLSV2 closes. CADM2 begins its three-minute anti-recycle time delay. On Y1 opening, Circuit 1 compressor stops, all outdoor fan motors stop and SVR1 relay is de-energized. Liquid line solenoid valve LLSV1 is de-energized and valve closes. CADM1 begins its three-minute anti-recycle time delay.

All Units

If either the Low Pressure Switch or High Pressure Switch opens while thermostat output Y1 or Y2 remain energized, the compressor contactor is de-energized, the compressor stops and liquid line solenoid is de-energized (valve closes). CADM initiates a TRIP event (cooling demand sensed at CADM terminal Y but no current is measured at T1, T2, T3 motor sensors); CADM relay opens and RED LED is illuminated. TRIP condition maintains lockout of compressor operation until CADM is manually reset. Reset CADM by cycling unit main power.

Complete system shutdown may be caused by loss of main power, open compressor internal overload, open low-pressure or high-pressure switch, or a fault detected by the CADM logic. Compressor operation without cooling may indicate the compressor's ASTP feature is active; disconnect unit power and allow compressor to cool. See Service section for further details.

Cooling, Unit With Economizer —

Refer to fan coil unit installation instructions and economizer accessory installation instructions for operating sequences when system is equipped with accessory economizer.

Heating —

Refer to fan coil unit installation instructions and accessory heating device installation instructions for operating sequences in heating mode.

CAS180/240 (Two Circuit)

On a thermostat call for Cooling, IFC will be energized and indoor (supply) fan motor runs. Thermostat output Y1 is energized; terminal Y1 at CAS180/240 unit receives 24-v. 24-v received at CADM1 terminal Y. If anti-recycle time delay period has not expired, CADM1 relay will remain open, de-energizing Solenoid Valve Relay 1 (SVR1) and preventing compressor start. When safety pressure switches are closed and CADM1 time delay expires, CADM1 relay closes, SVR1 and compressor contactor C1 are energized; liquid line solenoid valve LLSV1 opens, all outdoor fan motors start and Circuit 1 compressor starts.
ROUTINE SYSTEM MAINTENANCE

These items should be part of a routine maintenance program, to be checked every month or two, until a specific schedule for each can be identified for this installation:

Quarterly Inspection (and 30 days after initial start) —

Indoor section
- Condenser coil cleanliness checked.
- Return air filter replacement
- Outdoor hood inlet filters cleaned
- Belt tension checked
- Belt condition checked
- Pulley alignment checked
- Fan shaft bearing locking collar tightness checked
- Condensate drain checked

Seasonal Maintenance —

These items should be checked at the beginning of each season (or more often if local conditions and usage patterns dictate):

Air Conditioning
- Condenser fan motor mounting bolts tightness
- Compressor mounting bolts
- Condenser fan blade positioning
- Control box cleanliness and wiring condition
- Wire terminal tightness
- Refrigerant charge level
- Evaporator coil cleaning
- Evaporator blower motor amperage

Heating
- Power wire connections
- Fuses ready
- Manual-reset limit switch is closed

Economizer or Outside Air Damper
- Inlet filters condition
- Check damper travel (economizer)
- Check gear and dampers for debris and dirt

SERVICE

Refrigeration System

CAUTION

EQUIPMENT DAMAGE HAZARD

Failure to follow this caution may result in damage to equipment.

This system uses R–410A refrigerant which has higher pressures than R-22 and other refrigerants. No other refrigerant may be used in this system. Gage set, hoses, and recovery system must be designed to handle R–410A. If you are unsure consult the equipment manufacturer.

Compressor Oil —

CAUTION

EQUIPMENT DAMAGE HAZARD

Failure to follow this caution may result in damage to equipment.

The compressor in a R–410A system uses a polyolester (POE) oil. This oil is extremely hygroscopic, meaning it absorbs water readily. POE oils can absorb 15 times as much water as other oils designed for HCFC and CFC refrigerants. Take all necessary precautions to avoid exposure of the oil to the atmosphere.

Servicing Systems on Roofs With Synthetic Materials —

POE (polyester) compressor lubricants are known to cause long term damage to some synthetic roofing materials. Exposure, even if immediately cleaned up, may cause embrittlement (leading to cracking) to occur in one year or more. When performing any service which may risk exposure of compressor oil to the roof, take appropriate precautions to protect roofing. Procedures which risk oil leakage include but are not limited to compressor replacement, repairing refrigerants leaks, replacing refrigerant components such as filter drier, pressure switch, metering device, coil, accumulator, or reversing valve.

Synthetic Roof Precautionary Procedure:

1. Cover extended roof working area with an impermeable polyethylene (plastic) drop cloth or tarp. Cover an approximate 10 x 10 ft (3.3 x 3.3 m) area.
2. Cover area in front of the unit service panel with a terry cloth shop towel to absorb lubricant spills and prevent run-offs, and protect drop cloth from tears caused by tools or components.
3. Place terry cloth shop towel inside unit immediately under component(s) to be serviced and prevent lubricant run-offs through the louvered openings in the base pan.
4. Perform required service.
5. Remove and dispose of any oil contaminated material per local codes.

Liquid Line Filter Drier —

The factory-provided filter drier is specifically designed to operate with R–410A. Replace the filter drier with factory-authorized components only with a filter drier with desiccant made from 100% molecular sieve grade XH-11.
Filter drier must be replaced whenever the refrigerant system is opened. When removing a filter drier, use a tubing cutter to cut the drier from the system. Do not unsweat a filter drier from the system. Heat from unsweating will release moisture and contaminants from drier into system.

Field Refrigerant Access Ports —

Field service access to refrigerant pressures is through the access ports located at the service valves (see Fig 4). These ports are 1/4-in SAE Flare couplings with Schrader check valves and service caps. Use these ports to admit nitrogen to the field tubing during brazing, to evacuate the tubing and evaporator coil, to admit initial refrigerant charge into the low-side of the system and when checking and adjusting the system refrigerant charge. When service activities are completed, ensure the service caps are in place and secure; check for leaks. If the Schrader check valve must be removed and re-installed, tighten to 2-3 in-lbs (23-34 N-cm).

Factory High-Flow Access Ports —

There are two additional access ports in the system - on the suction tube between the compressor and the suction service valve and on the liquid tube near the liquid service valve (see Figs 28 and 29). These are brass fittings with black plastic caps. The hose connection fittings are standard 1/4-in SAE Male Flare couplings. The brass fittings are two-piece High Flow valves, with a receptacle base brazed to the tubing and an integral spring-closed check valve core screwed into the base. (See Fig. 25) This check valve is permanently assembled into this core body and cannot be serviced separately; replace the entire core body if necessary. Service tools are available from RCD that allow the replacement of the check valve core without having to recover the entire system refrigerant charge. Apply compressor refrigerant oil to the check valve core’s bottom o-ring. Install the fitting body with 96 ±10 in-lbs (1085 ±23 N-cm) of torque; do not overtighten.

Figure 25 | CoreMax Access Port Assembly

![CoreMax Access Port Assembly Diagram]
Comfort Alert Diagnostic Module

The Comfort Alert Diagnostic Module (CADM) monitors and analyzes data from the Copeland Scroll® three-phase compressor and the thermostat demand. The CADM also provides a 3-minute anti-recycle time delay to compressor cycling. Each compressor has a separate CADM module.

The CADM detects causes for electrical and system related failures without any sensors. Flashing LEDs communicate the Alert codes to guide service technicians in accurately and quickly troubleshooting the system and determining root cause for the failure.

Inputs to the CADM include 24-vac power, thermostat Y1 or Y2, compressor contactor coil (common side) and compressor power leads (from the compressor contactor).

<table>
<thead>
<tr>
<th>Input</th>
<th>Terminal</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Power</td>
<td>R</td>
<td>24-V</td>
</tr>
<tr>
<td>Control Common</td>
<td>C</td>
<td>24-V</td>
</tr>
<tr>
<td>Cooling</td>
<td>Y</td>
<td>24-V</td>
</tr>
<tr>
<td>Contactor Coil</td>
<td>P</td>
<td>24-V</td>
</tr>
<tr>
<td>Line A</td>
<td>T1</td>
<td>Line</td>
</tr>
<tr>
<td>Line B</td>
<td>T2</td>
<td>Line</td>
</tr>
<tr>
<td>Line C</td>
<td>T3</td>
<td>Line</td>
</tr>
</tbody>
</table>

Control of the compressor contactor coil is through a normally-closed (power on the module) contact between terminals P and C.

Communications of status and alert conditions is through three LEDs located on the top edge of the module housing (see Fig. 26): POWER (green), ALERT (yellow), and TRIP (red).

The POWER LED indicates the presence of control power to the CADM.

The ALERT LED indicates an abnormal condition exists in the system through a flash code. The ALERT LED will blink a number of times consecutively, pause and the repeat the process. The number of blinks, defined in Table 11, correlates to a particular abnormal condition; troubleshooting tips are provided for each Alert code. Reset of the ALERT may be automatic or manual. If the fault condition causing the Alert is self-corrected, the Alert code will be removed and the CADM will automatically reset and allow the system to restart normally. Manual reset requires that main power to the CAS unit be recycled after the cause for the Alert condition has been detected and corrected.

The TRIP LED indicates either a time-delay period is currently active (RED LED is blinking) or the module has locked out the compressor (RED LED is on steady). A lockout condition will occur when the CADM detects a thermostat demand at input Y but there is no power at the compressor line terminals T1 or T2 or T3. This lockout can occur due to a safety switch (LPS or HPS) opening and de-energizing the compressor contactor, the compressor-motor internal overload opens, or other internal power interruption has occurred. Reset of the TRIP LED requires that unit main power be recycled after the loss of power to the compressor condition has been detected and corrected.

Simultaneous Blinking of YELLOW and RED LEDs indicates control power input to the CADM is low. Check control circuit transformer and wiring.

Troubleshooting the CADM Wiring – Flashing LEDs also indicate wiring problems to the CADM. See Table 12 for discussion of additional LED flash codes and troubleshooting instructions.
<table>
<thead>
<tr>
<th>Status LED</th>
<th>Status LED Description</th>
<th>Status LED Troubleshooting Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green "POWER"</td>
<td>Module has power</td>
<td>Supply voltage is present at module terminals</td>
</tr>
</tbody>
</table>
| Red “TRIP” LED On Solid | Thermostat demand signal Y is present, but the compressor is not running. | 1. Compressor protector is open
2. Condensing unit power disconnect is open
3. Compressor circuit breaker or fuse(s) is open
4. Broken supply wires or connector is not making contact
5. Compressor power wires not routed through Comfort Alert
6. Compressor contactor has failed open |
| Red “TRIP” LED Flashing | The anti-short cycle timer (3 minutes) in module is preventing compressor restart. | |
| Yellow “ALERT” LED On Solid | A short circuit or over current condition exists on PROT terminal. | 1. Compressor contactor coil shorted
2. Electrical load too high for PROT circuit (maximum 1 Amp)
3. 24 V AC wired directly to PROT terminal |
| Yellow “ALERT” Flash Code 2 | System Pressure Trip Discharge pressure out of limits or compressor overload (if no high pressure switch in system) LOCKOUT | 1. High head pressure
2. Condenser coil poor air circulation (dirty, blocked, damaged)
3. Condenser fan is not running
4. If low pressure switch is open: Refer to Code 3 for troubleshooting |
| Yellow “ALERT” Flash Code 3 | Short Cycling Compressor is running only briefly (four consecutive cycles of less than three minutes each) LOCKOUT | 1. If low pressure switch is open:
a. Low refrigerant charge
b. Evaporator blower is not running
c. Evaporator coil is frozen
d. Faulty metering device
e. Condenser coil is dirty
f. Liquid line restriction (filter drier blocked if present)
2. If high pressure switch is open, go to Flash Code 2 information
3. Intermittent thermostat demand signal
4. System or control board defective |
| Yellow “ALERT” Flash Code 4 | Locked Rotor LOCKOUT | 1. Low line voltage to compressor
2. Excessive liquid refrigerant in compressor
3. Compressor bearings are seized |
| Yellow “ALERT” Flash Code 5 | Open Circuit | 1. Condensing unit power disconnect is open
2. Compressor circuit breaker or fuses are open
3. Compressor contactor has failed open
4. High pressure switch is open and requires manual reset
5. Broken supply wires or connector is not making contact
6. Unusually long compressor protector reset time due to extreme ambient temperature
7. Compressor windings are damaged |
| Yellow “ALERT” Flash Code 6 | Missing Phase LOCKOUT | 1. Compressor fuse is open on one phase
2. Broken wire or connector on one phase
3. Compressor motor winding is damaged
4. Utility supply has dropped one phase |
| Yellow “ALERT” Flash Code 7 | Reverse Phase LOCKOUT | 1. Compressor running backward due to supply phase reversal |
| Yellow “ALERT” Flash Code 8 | Welded Contactor Compressor always runs | 1. Compressor contactor has failed closed
2. Thermostat demand signal not connected to module |
| Yellow “ALERT” Flash Code 9 | Low Voltage Control circuit < 18VAC | 1. Control circuit transformer is overloaded
2. Low line voltage to compressor |
Table 12 – CADM Troubleshooting

<table>
<thead>
<tr>
<th>Miswired Module Indication</th>
<th>Recommended Troubleshooting Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green LED is not on, module does not power up</td>
<td>Determine if both R and C module terminals are connected. Verify voltage in present at module’s R and C terminals. NOTE: The CADM requires a constant nominal 24VAC power supply. The wiring to the module’s R and C terminals must be directly from the control transformer. The module cannot receive its power from another device that will interrupt the 24VAC power supply. See the CAS Wiring Diagram(s) (Fig. 27 and Fig. 28).</td>
</tr>
<tr>
<td>Green LED Intermittent, module powers up only when compressor runs</td>
<td>Determine if R and Y terminals are wired in reverse. Verify module’s R and C terminals have a constant source. See “NOTE” above for details on R and C wiring.</td>
</tr>
<tr>
<td>TRIP LED is on but system and compressor check OK</td>
<td>Verify Y terminal is wired properly per the CAS wiring diagram (see Fig. 27 and Fig. 28). Verify voltage at contactor coil falls below 0.5VAC when off. Verify 24VAC is present across Y and C when thermostat demand signal is present. If not, R and C are reverse wired.</td>
</tr>
<tr>
<td>TRIP LED and ALERT LED flashing together</td>
<td>Verify R and C terminals are supplied with 19-28VAC.</td>
</tr>
<tr>
<td>ALERT Flash Code 3 (Compressor Short Cycling) displayed incorrectly</td>
<td>Verify Y terminal is connected to 24VAC at contactor coil. Verify voltage at contactor coil falls below 0.5VAC when off.</td>
</tr>
<tr>
<td>ALERT Flash Code 5 or 6 (Open Circuit, Missing Phase) displayed incorrectly</td>
<td>Check that compressor T1 and T3 wires are through module’s current sensing holes. Verify Y terminal is connected to 24VAC at contactor coil. Verify voltage at contactor coil falls below 0.5VAC when off.</td>
</tr>
<tr>
<td>Alert Flash Code * (Welded Contactor) displayed incorrectly</td>
<td>Determine if module’s Y terminal is connected. Verify Y terminal is connected to 24VAC at contactor coil. Verify 24VAC is present across Y and C when thermostat demand signal is present. If not, R and C are reverse wired. Verify voltage at contactor coil falls below 0.5VAC when off.</td>
</tr>
</tbody>
</table>

Compressor Protection

Compressor Overtemperature Protection (IP) —
A thermostat installed on the compressor motor winding reacts to excessively high winding temperatures and shuts off the compressor.

Crankcase Heater —
The heater minimizes absorption of liquid refrigerant by oil in the crankcase during brief or extended shutdown periods. The heater is wired to cycle with the compressor; the heater is off when compressor is running, and on when compressor is off.

The crankcase heater will operate as long as the power circuit is energized. The main disconnect must be on to energize the crankcase heater.

IMPORTANT: Never open any switch or disconnect that energizes the crankcase heater unless unit is being serviced or is to be shut down for a prolonged period. After a prolonged shutdown on a service job, energize the crankcase heater for 24 hours before starting the compressor.

Advanced Scroll Temperature Protection (ASTP) —
See “Advanced Scroll Temperature Protection (ASTP)”.

Low-Pressure Switch —
The CAS low-pressure switch is stem-mounted on the suction line. Switches are all fixed, non-adjustable type.

High-Pressure Switch —
The high-pressure switch is stem mounted on the discharge line. The switch is a fixed, non-adjustable type.

Outdoor Fans —
Each fan is supported by a formed-wire mount bolted to the fan deck and covered with a wire guard. Fan motors have permanently lubricated bearings.
1. Shut off unit power supply. Install lockout tag.
2. Remove outdoor fan assembly (grille, motor, and fan).
3. Loosen fan hub setscrews.
4. Adjust fan height as shown in Fig. 27.
5. Tighten setscrews to 84 in–lbs (949 N–cm).
6. Replace outdoor fan assembly.

Figure 27 Outdoor Fan Blade Position

Lubrication —
Fan Motors: The fan motors have sealed bearings. No provisions are made for lubrication.
Compressor: The compressor has its own oil supply. Loss of oil due to a leak in the system should be the only reason for adding oil after the system has been in operation.
Figure 32 CAS240 Cabinet

- Condenser Fans/Motors
- Access Panel - Control Box & Compressors
- Service Valves

Figure 33 CAS240 Piping

- CKT 1
- CKT 2
- HPS
- LPS
Coil Type Identification

CAS units are available with different coil types. Cleaning methods differ for each type so identifying the coil type is important. Unit model number and appearance can identify the coil type.

Model number designation: See Model Nomenclature on page 3 for general unit model number format. Position 9 indicates the coil type and coating.

Round–Tube Plate–Fin (RTPF) Type —

This construction uses a series of small diameter copper hairpin tubes running horizontally with vertical plate fins. The plate fins may be aluminum (standard) or copper (optional). Various optional coatings are also available. These coils may be one–row or two–row.

Routine Cleaning of Round-Tube Plate Fin (RTPF) Coils —

Periodic cleaning with environmentally sound coil cleaner is essential to extend the life of RTPF coils. Cleaner as described below.

Coil cleaning should be part of the unit’s regularly scheduled maintenance procedures to ensure long life of the coil. Failure to clean the coils may result in reduced durability in the environment.

Avoid the use of:

• coil brighteners
• acid cleaning prior to painting
• high pressure washers
• poor quality water for cleaning
• water rinse coil with low velocity spray nozzle

Use a coil cleaner that is non–flammable, hypoallergenic, non–bacterial, and a USDA accepted biodegradable agent that will not harm the coil or surrounding components such as electrical wiring, painted metal surfaces, or insulation. Use of non–recommended coil cleaners is strongly discouraged since coil and unit durability could be affected.

Coil Cleaner Application Equipment —

• 2 1/2 gallon garden sprayer
• water rinse with low velocity spray nozzle

⚠️ CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in corrosion and damage to the unit.

Harsh chemicals, household bleach or acid or basic cleaners should not be used to clean outdoor or indoor coils or any kind. These cleaners can be very difficult to rinse out of the coil and can accelerate corrosion at the fin/tube interface where dissimilar materials are in contact. If there is dirt below the surface of the coil use the FAST environmentally sound coil cleaner as described above.

⚠️ CAUTION

UNIT RELIABILITY HAZARD

Failure to follow this caution may result in reduced unit performance.

High velocity water from a pressure washer, garden hose, or compressed air should never be used to clean a coil. The force of the water or air jet will bend the fin edges and increase airside pressure drop.

Coil Cleaner Application Instructions:

NOTE: Proper eye protection such as safety glasses is recommended during mixing and application.

1. Turn off unit power.

2. Remove screws holding rear corner post and top cover in place. Pivot top cover up 12 to 18 inches (305 to 457 mm) and support with a rigid support. See Fig. 36.

3. Remove all surface loaded fibers and dirt with a vacuum cleaner. If a vacuum cleaner is not available, a soft non-metallic bristle brush may be used. In either case, the tool should be applied in the direction of the fins. Coil surfaces can be easily damaged (fin edges can be easily bent over and damage to the coating of a protected coil) if the tool is applied across the fins.

NOTE: Use of a water stream, such as a garden hose, against surface loaded coil will drive the fibers and dirt into the coil, making cleaning efforts more difficult. Surface loaded fibers must be completely removed prior to using low velocity clean water rinse.

4. Using a low velocity garden hose thoroughly wet finned surfaces with clean water. Be careful not to bend the fins.

5. Mix coil cleaner in a 2 1/2 gallon garden sprayer according to the instructions included with the cleaner. The optimum solution temperature is 100°F (38°C).

NOTE: Do NOT USE water in excess of 130°F (54°C), as the enzymatic activity will be destroyed.

6. Thoroughly apply environmentally sound coil cleaner solution to all coil surfaces including the finned area, tube sheets and coil headers.
7. Hold garden sprayer nozzle close to finned areas and apply cleaner with a vertical, up-and-down motion. Avoid spraying in horizontal pattern to minimize potential for fin damage.
8. Ensure cleaner thoroughly penetrates deep into finned areas.
9. Interior and exterior finned areas must be thoroughly cleaned.
10. Finned surfaces should remain wet with cleaning solution for 10 minutes.

11. Ensure surfaces are not allowed to dry before rinsing. Reapply cleaner as needed to ensure 10-minute saturation is achieved.
12. Thoroughly rinse all surfaces with low velocity clean water using downward rinsing motion of water spray nozzle. Protect fins from damage from the spray nozzle.
13. Replace top cover and rear corner posts.

FASTENER TORQUE VALUES

Table 13 – Torque Values

<table>
<thead>
<tr>
<th>Fastener Type</th>
<th>Torque Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor mounting bolts</td>
<td>65–75 in–lbs (734–847 N–cm)</td>
</tr>
<tr>
<td>Condenser fan motor mounting bolts</td>
<td>20 ±2 in–lbs (226 ±23 N–cm)</td>
</tr>
<tr>
<td>Condenser fan hub setscrew</td>
<td>84 ±2 in–lbs (949 ±136 N–cm)</td>
</tr>
<tr>
<td>High-flow service port</td>
<td>96 ±10 in–lbs (1085 ±23 N–cm)</td>
</tr>
<tr>
<td>Schrader-type service check valve</td>
<td>2–3 in–lbs (23–34 N–cm)</td>
</tr>
<tr>
<td>Compressor oil sightglass thread</td>
<td>330 ±31 in–lbs (23–34 N–cm)</td>
</tr>
<tr>
<td>Compressor to Compressor rail torque</td>
<td>120–168 in–lbs (1356–1898 N–cm)</td>
</tr>
<tr>
<td>Compressor rail to base pan torque</td>
<td>70 ±5 in–lbs (791 ±57 N–cm)</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPRESSOR DOES NOT RUN</td>
<td></td>
</tr>
<tr>
<td>Contactor Open</td>
<td></td>
</tr>
<tr>
<td>1. Power off.</td>
<td>1. Restore power.</td>
</tr>
<tr>
<td>2. Fuses blown in field power circuit.</td>
<td>2. After finding cause and correcting, replace with correct size fuse.</td>
</tr>
<tr>
<td>3. No control power.</td>
<td>3. Check control transformer primary connections and circuit breaker.</td>
</tr>
<tr>
<td>4. Thermostat circuit open.</td>
<td>4. Check thermostat setting.</td>
</tr>
<tr>
<td>5. Safety device lockout circuit active.</td>
<td>5. Reset lockout circuit.</td>
</tr>
<tr>
<td>6. Low-pressure switch open.</td>
<td>6. Check for refrigerant undercharge, obstruction of indoor airflow. Make sure liquid line solenoid valve(s) is open.</td>
</tr>
<tr>
<td>7. High-pressure switch open.</td>
<td>7. Check for refrigerant overcharge, obstruction of outdoor airflow, air in system. Be sure outdoor fans are operating correctly.</td>
</tr>
<tr>
<td>10. Compressor stuck.</td>
<td>10. See compressor service literature.</td>
</tr>
<tr>
<td>Contactor Closed</td>
<td></td>
</tr>
<tr>
<td>2. Motor windings open.</td>
<td>2. See compressor service literature.</td>
</tr>
<tr>
<td>COMPRESSOR STOPS ON HIGH-PRESSURE SWITCH</td>
<td></td>
</tr>
<tr>
<td>Outdoor Fan On</td>
<td></td>
</tr>
<tr>
<td>1. High-pressure switch faulty.</td>
<td>1. Replace switch.</td>
</tr>
<tr>
<td>2. Reversed fan rotation.</td>
<td>2. Confirm rotation, correct if necessary.</td>
</tr>
<tr>
<td>3. Airflow restricted.</td>
<td>3. Remove obstruction.</td>
</tr>
<tr>
<td>5. Noncondensables in system.</td>
<td>5. Recover refrigerant and recharge as required.</td>
</tr>
<tr>
<td>6. Refrigerant overcharge.</td>
<td>6. Recover refrigerant as required.</td>
</tr>
<tr>
<td>7. Line voltage incorrect.</td>
<td>7. Consult power company.</td>
</tr>
<tr>
<td>8. Refrigerant system restrictions.</td>
<td>8. Check or replace filter drier, expansion valve, etc.</td>
</tr>
<tr>
<td>Outdoor Fan Off</td>
<td></td>
</tr>
<tr>
<td>1. Fan slips on shaft.</td>
<td>1. Tighten fan hub setscrews.</td>
</tr>
<tr>
<td>2. Motor not running.</td>
<td>2. Check power and capacitor.</td>
</tr>
<tr>
<td>5. Motor burned out.</td>
<td>5. Replace motor.</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>SOLUTION</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>COMPRESSOR CYCLES ON LOW-PRESSURE SWITCH
Indoor-Air Fan Running</td>
<td>1. Liquid line solenoid valve(s) fails to open. 1. Check liquid line solenoid valve(s) for proper operation. Replace if necessary. 2. Filter drier plugged. 2. Replace filter drier. 3. Expansion valve power head defective. 3. Replace power head. 4. Low refrigerant charge. 4. Add charge. Check low-pressure switch setting.</td>
</tr>
<tr>
<td>Airflow Restricted</td>
<td>1. Coil iced up. 1. Check refrigerant charge. 2. Coil dirty. 2. Clean coil fins. 3. Air filters dirty. 3. Clean or replace filters. 4. Dampers closed. 4. Check damper operation and position.</td>
</tr>
<tr>
<td>Suction Pressure Low</td>
<td>1. Unloaders not functioning 1. Check unloader adjustments. Check unloader setting. 2. Heat load excessive. 2. Check for open doors or windows in vicinity of fan coil.</td>
</tr>
<tr>
<td>Suction Pressure High</td>
<td>1. Refrigerant charge low. 1. Add refrigerant. 2. Control contacts fused. 2. Replace control. 3. Air in system. 3. Purge and evacuate system. 4. Partially plugged expansion valve or filter drier. 4. Clean or replace.</td>
</tr>
<tr>
<td>UNIT OPERATES TOO LONG OR CONTINUOUSLY</td>
<td>1. Low refrigerant charge. 1. Add refrigerant. 2. Control contacts fused. 2. Replace control. 3. Air in system. 3. Purge and evacuate system. 4. Partially plugged expansion valve or filter drier. 4. Clean or replace.</td>
</tr>
<tr>
<td>SYSTEM IS NOISY</td>
<td>1. Piping vibration. 1. Support piping as required. 2. Compressor noisy. 2. Replace compressor if bearings are worn.</td>
</tr>
<tr>
<td>COMPRESSOR LOSES OIL</td>
<td>1. Leak in system. 1. Repair leak. 2. Crankcase heaters not energized during shutdown. 2. Check wiring and relays. Check heater and replace if defective. 3. Improper interconnecting piping design. 3. Check piping for oil return. Replace if necessary.</td>
</tr>
<tr>
<td>FROSTED SUCTION LINE</td>
<td>1. Expansion valve admitting excess refrigerant. Adjust expansion valve.</td>
</tr>
<tr>
<td>FROSTED LIQUID LINE</td>
<td>1. Restricted filter drier. 1. Remove restriction or replace. 2. Liquid line solenoid valve partially closed. 2. Replace valve.</td>
</tr>
</tbody>
</table>
APPENDIX A

Air Conditioner & Heat Pump with R−410A — Quick Reference Guide

- R−410A refrigerant operates at 50 percent to 70 percent higher pressures than R-22. Be sure that servicing equipment and replacement components are designed to operate with R−410A.
- R−410A refrigerant cylinders are rose colored.
- Recovery cylinder service pressure rating must be 400 psig, DOT 4BA400 or DOT BW400.
- R−410A systems should be charged with liquid refrigerant. Use a commercial type metering device in the manifold hose when charging into suction line with compressor operating.
- Manifold sets should be 700 psig high side and 180 psig low side with 550 psig low-side retard.
- Use hoses with 700 psig service pressure rating.
- Leak detectors should be designed to detect HFC refrigerant.
- R−410A, as with other HFCs, is only compatible with POE oils.
- Vacuum pumps will not remove moisture from oil.
- Use only factory specified liquid-line filter driers with rated working pressures greater than 600 psig.
- Do not install a suction-line filter drier in liquid-line.
- POE oils absorb moisture rapidly. Do not expose oil to atmosphere.
- POE oils may cause damage to certain plastics and roofing materials.
- Wrap all filter driers and service valves with wet cloth when brazing.
- A factory approved, liquid-line filter drier is required on every unit.
- Do not use an R-22 TXV.
- If indoor unit is equipped with a TXV, it must be changed to a R−410A TXV.
- Never open system to atmosphere while it is under a vacuum.
- When system must be opened for service, recover refrigerant, break vacuum with dry nitrogen before opening system.
- Always replace filter drier after opening system for service.
- Do not vent R−410A into the atmosphere.
- Do not use capillary tube coils.
- Observe all warnings, cautions, and bold text.
- All R−410A heat pumps must have indoor TXV.
- Do not leave R−410A suction line driers in place for more than 72 hours.
APPENDIX B

Low Ambient Option — Factory Installed

Units with the factory installed low ambient option are equipped with a Motormaster® solid-state head pressure control which regulates fan speed. A temperature sensor, mounted on circuit 1 of the outdoor coil (see Figs. 37 and 38) controls the speed of approved outdoor fan motors in order to maintain a constant head pressure in the outdoor coil. The control maintains the appropriate head pressure at low ambient temperatures down to −20°F (−28°C).

Wind baffles are required to prevent wind cross currents from causing abnormally low condensing temperatures.

- Use 20-gauge sheet metal to fabricate wind baffles (see Fig. 40–43 and Table 14) and mounting brackets.

NOTE: Mounting brackets are for use on 15 ton model units only.

- Install the wind baffles as shown in Fig. 39–42.

Operation —

Fan on/off control in cooling-only units (CAS181/241, CAS180/240) is provided by an outdoor fan relay (OFR).

In cooling mode, fan motor speed of outdoor motors OFM1 and OFM3 is regulated by the speed control temperature sensor on outdoor coil 1 for a minimum coil condensing temperature of approximately 100°F (38°C) at higher outdoor ambient temperature and 80°F (27°C) at lower ambient. Additionally, outdoor fan motor OFM2 and OFM4 are turned on/off by the low ambient temperature switch, LAS, operating the low ambient relay (LAR). The LAS control temperatures are open 42°F ± 5°F (5.5°C ± 2.8°C), close 57°F ± 5°F (13.9°C ± 2.8°C).

To override the speed control for full fan speed operation during service or maintenance, either:

a. remove sensor and place in hot water >120°F (>49°C), or

b. rewire to bypass control by connecting speed control input and output power wires.

Troubleshooting —

<table>
<thead>
<tr>
<th>OBSERVATION</th>
<th>POSSIBLE REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans won’t start</td>
<td>All fans: Check power & wiring</td>
</tr>
<tr>
<td></td>
<td>Check outdoor fan relay (OFR)</td>
</tr>
<tr>
<td></td>
<td>OFM1, OFM3 only: Check speed control sensor location</td>
</tr>
<tr>
<td></td>
<td>Check speed sensor resistance</td>
</tr>
<tr>
<td></td>
<td>OFM2, OFM4 only: Check low ambient switch (LAS)</td>
</tr>
<tr>
<td></td>
<td>Check low ambient relay (LAR)</td>
</tr>
</tbody>
</table>

Cooling – Center outdoor fans (OFM2, OFM4) off below approximately 60°F (16°C) outdoor ambient.	Normal operation
Cooling – Center outdoor fans (OFM2, OFM4) not on above approximately 60°F (16°C) outdoor ambient	Check low ambient switch (LAS)
Check low ambient relay (LAR)	
Cooling – Slow fan speed for outer fans (OFM1, OFM3) at start or during low outdoor ambient	Normal operation
Check speed control sensor location	
Check speed control sensor resistance	
Check fan motor capacitor	
Cooling – motor current into speed control is greater than motor nameplate FLA	Normal operation
Up to 30% higher A at partial speed at low ambient	

Speed Control Sensor Resistance —

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F ± 2°F</td>
<td>°C ± 1°C</td>
</tr>
<tr>
<td>−22</td>
<td>−30</td>
</tr>
<tr>
<td>−4</td>
<td>−20</td>
</tr>
<tr>
<td>14</td>
<td>−10</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>68</td>
<td>20</td>
</tr>
<tr>
<td>77</td>
<td>25</td>
</tr>
<tr>
<td>86</td>
<td>30</td>
</tr>
<tr>
<td>104</td>
<td>40</td>
</tr>
<tr>
<td>122</td>
<td>50</td>
</tr>
<tr>
<td>140</td>
<td>60</td>
</tr>
<tr>
<td>158</td>
<td>70</td>
</tr>
</tbody>
</table>
Table 14 – Wind Baffle Dimension

<table>
<thead>
<tr>
<th>UNIT</th>
<th>BAFFLE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BAFFLE</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>LEFT SIDE</td>
<td>10(\frac{3}{4})</td>
<td>11 (\frac{1}{2})</td>
<td>12 (\frac{1}{4})</td>
<td>43 (\frac{1}{8})</td>
<td>4 (\frac{1}{4})</td>
<td>13 (\frac{1}{4})</td>
<td>22 (\frac{1}{4})</td>
<td>31 (\frac{1}{4})</td>
<td>40 (\frac{1}{4})</td>
</tr>
<tr>
<td></td>
<td>BACK</td>
<td>80 (\frac{1}{4})</td>
<td>81</td>
<td>81 (\frac{3}{4})</td>
<td>43 (\frac{1}{8})</td>
<td>8 (\frac{3}{8})</td>
<td>18</td>
<td>27 (\frac{1}{4})</td>
<td>40</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>RIGHT SIDE</td>
<td>38 (\frac{3}{4})</td>
<td>39 (\frac{1}{2})</td>
<td>40 (\frac{1}{4})</td>
<td>43 (\frac{1}{8})</td>
<td>8 (\frac{3}{8})</td>
<td>18</td>
<td>27 (\frac{1}{4})</td>
<td>40</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>FRONT</td>
<td>27</td>
<td>27 (\frac{3}{4})</td>
<td>28 (\frac{1}{2})</td>
<td>43 (\frac{1}{8})</td>
<td>3 (\frac{3}{4})</td>
<td>12 (\frac{3}{4})</td>
<td>21 (\frac{1}{4})</td>
<td>30 (\frac{3}{4})</td>
<td>39 (\frac{3}{4})</td>
</tr>
<tr>
<td></td>
<td>LEFT SIDE</td>
<td>32 (\frac{7}{8})</td>
<td>33 (\frac{5}{8})</td>
<td>34 (\frac{3}{8})</td>
<td>43 (\frac{1}{8})</td>
<td>4 (\frac{1}{4})</td>
<td>13 (\frac{1}{4})</td>
<td>22 (\frac{1}{4})</td>
<td>31 (\frac{1}{4})</td>
<td>40 (\frac{1}{4})</td>
</tr>
<tr>
<td></td>
<td>BACK</td>
<td>47 (\frac{3}{4})</td>
<td>48 (\frac{1}{2})</td>
<td>49 (\frac{1}{4})</td>
<td>43 (\frac{1}{8})</td>
<td>4 (\frac{1}{4})</td>
<td>13 (\frac{1}{4})</td>
<td>22 (\frac{1}{4})</td>
<td>31 (\frac{1}{4})</td>
<td>40 (\frac{1}{4})</td>
</tr>
<tr>
<td></td>
<td>RIGHT SIDE</td>
<td>61 (\frac{1}{8})</td>
<td>61 (\frac{7}{8})</td>
<td>62 (\frac{5}{8})</td>
<td>43 (\frac{1}{8})</td>
<td>3 (\frac{3}{4})</td>
<td>12 (\frac{3}{4})</td>
<td>21 (\frac{1}{4})</td>
<td>30 (\frac{3}{4})</td>
<td>39 (\frac{3}{4})</td>
</tr>
<tr>
<td></td>
<td>FRONT</td>
<td>20 (\frac{1}{8})</td>
<td>20 (\frac{7}{8})</td>
<td>21 (\frac{3}{8})</td>
<td>43 (\frac{1}{8})</td>
<td>3 (\frac{3}{4})</td>
<td>12 (\frac{3}{4})</td>
<td>21 (\frac{1}{4})</td>
<td>30 (\frac{3}{4})</td>
<td>39 (\frac{3}{4})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT</th>
<th>BAFFLE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BAFFLE</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>LEFT SIDE</td>
<td>272</td>
<td>291</td>
<td>310</td>
<td>1095</td>
<td>108</td>
<td>337</td>
<td>565</td>
<td>794</td>
<td>1022</td>
</tr>
<tr>
<td></td>
<td>BACK</td>
<td>2037</td>
<td>2056</td>
<td>2075</td>
<td>1095</td>
<td>212</td>
<td>457</td>
<td>694</td>
<td>1015</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>RIGHT SIDE</td>
<td>983</td>
<td>1002</td>
<td>1021</td>
<td>1095</td>
<td>212</td>
<td>457</td>
<td>694</td>
<td>1015</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>FRONT</td>
<td>684</td>
<td>704</td>
<td>723</td>
<td>1095</td>
<td>95</td>
<td>324</td>
<td>552</td>
<td>781</td>
<td>1010</td>
</tr>
<tr>
<td></td>
<td>LEFT SIDE</td>
<td>834</td>
<td>853</td>
<td>872</td>
<td>1095</td>
<td>108</td>
<td>337</td>
<td>565</td>
<td>794</td>
<td>1022</td>
</tr>
<tr>
<td></td>
<td>BACK</td>
<td>1214</td>
<td>1233</td>
<td>1252</td>
<td>1095</td>
<td>108</td>
<td>337</td>
<td>565</td>
<td>794</td>
<td>1022</td>
</tr>
<tr>
<td></td>
<td>RIGHT SIDE</td>
<td>1551</td>
<td>1570</td>
<td>1589</td>
<td>1095</td>
<td>95</td>
<td>324</td>
<td>552</td>
<td>781</td>
<td>1010</td>
</tr>
<tr>
<td></td>
<td>FRONT</td>
<td>510</td>
<td>530</td>
<td>549</td>
<td>1095</td>
<td>95</td>
<td>324</td>
<td>552</td>
<td>781</td>
<td>1010</td>
</tr>
</tbody>
</table>
Figure 40 15 Ton Wind Baffle Brackets - Fabrication

15 TON WIND BAFFLE BRACKET - TOP
QTY: 2 NOS

15 TON WIND BAFFLE BRACKET - BOTTOM
QTY: 1 NO
Figure 41 Wind Baffle Installation – 15 Ton Units
Figure 42 Wind Baffle Installation – 20 Ton Units
START-UP CHECKLIST

I. PRELIMINARY INFORMATION
OUTDOOR: MODEL NO. __________________ SERIAL NO. __________________________
INDOOR: AIRHANDLER MANUFACTURER __________________ MODEL NO. ________________ SERIAL NO. __________________
ADDITIONAL ACCESSORIES __

II. PRE-START-UP
OUTDOOR UNIT
IS THERE ANY SHIPPING DAMAGE? (Y/N) ______
IF SO, WHERE: __

WILL THIS DAMAGE PREVENT UNIT START-UP? (Y/N) ______
CHECK POWER SUPPLY. DOES IT AGREE WITH UNIT? (Y/N) ______
HAS THE GROUND WIRE BEEN CONNECTED? (Y/N) ______
HAS THE CIRCUIT PROTECTION BEEN SIZED AND INSTALLED PROPERLY? (Y/N) ______
ARE THE POWER WIRES TO THE UNIT SIZED AND INSTALLED PROPERLY? (Y/N) ______

CONTROLS
ARE THERMOSTAT AND INDOOR FAN CONTROL WIRING CONNECTIONS MADE AND CHECKED? (Y/N) ______
ARE ALL WIRING TERMINALS (including main power supply) TIGHT? (Y/N) ______
HAS CRANKCASE HEATER BEEN ENERGIZED FOR 24 HOURS? (Y/N) ______

INDOOR UNIT
HAS WATER BEEN PLACED IN DRAIN PAN TO CONFIRM PROPER DRAINAGE? (Y/N) ______
ARE PROPER AIR FILTERS IN PLACE? (Y/N) ______
HAVE FAN AND MOTOR PULLEYS BEEN CHECKED FOR PROPER ALIGNMENT? (Y/N) ______
DO THE FAN BELTS HAVE PROPER TENSION? (Y/N) ______
HAS CORRECT FAN ROTATION BEEN CONFIRMED? (Y/N) ______

PIPING
ARE LIQUID LINE SOLENOID VALVES LOCATED AT THE INDOOR COILS AS REQUIRED? (Y/N) ______
HAVE LEAK CHECKS BEEN MADE AT COMPRESSOR, OUTDOOR AND INDOOR COILS, TXVs (Thermostatic Expansion Valves), SOLENOID VALVES, FILTER DRIERS, AND FUSIBLE PLUGS WITH A LEAK DETECTOR? (Y/N) ______
LOCATE, REPAIR, AND REPORT ANY LEAKS.

HAVE LIQUID LINE SERVICE VALVES BEEN OPENED? (Y/N) ______
HAVE SUCTION SERVICE VALVES BEEN OPENED? (Y/N) ______
CHECK VOLTAGE IMBALANCE

LINE-TO-LINE VOLTS: AB _______ V AC _______ BC _______ V

(AB + AC + BC)/3 = AVERAGE VOLTAGE = _________ V

MAXIMUM DEVIATION FROM AVERAGE VOLTAGE = _________ V

VOLTAGE IMBALANCE = 100 X (MAX DEVIATION)/(AVERAGE VOLTAGE) = _________

IF OVER 2% VOLTAGE IMBALANCE, DO NOT ATTEMPT TO START SYSTEM!
CALL LOCAL POWER COMPANY FOR ASSISTANCE.

CHECK INDOOR UNIT FAN SPEED AND RECORD. ________
CHECK OUTDOOR UNIT FAN SPEED AND RECORD. ________

AFTER AT LEAST 10 MINUTES RUNNING TIME, RECORD THE FOLLOWING MEASUREMENTS:

SUCTION PRESSURE CIR 1: ________ CIR 2: ________

SUCTION LINE TEMP CIR 1: ________ CIR 2: ________

LIQUID PRESSURE CIR 1: ________ CIR 2: ________

LIQUID LINE TEMP CIR 1: ________ CIR 2: ________

ENTERING OUTDOOR UNIT AIR TEMP ________

LEAVING OUTDOOR UNIT AIR TEMP ________

INDOOR UNIT ENTERING-AIR DB (dry bulb) TEMP ________

INDOOR UNIT ENTERING-AIR WB (wet bulb) TEMP ________

INDOOR UNIT LEAVING-AIR DB TEMP ________

INDOOR UNIT LEAVING-AIR WB TEMP ________

COMPRESSOR 1 AMPS (L1/L2/L3) ________ / ________ / ________

COMPRESSOR 2 AMPS (L1/L2/L3) ________ / ________ / ________

NOTES:

__

__

__

__

__

__

__

__

__

__